Articles | Volume 372
https://doi.org/10.5194/piahs-372-443-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-372-443-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Three dimensional numerical modeling of land subsidence in Shanghai
School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
Y. Luo
School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
J. Wu
School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
P. Teatini
Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
H. Wang
Key Laboratory of Land Subsidence, Shanghai Institute of Geological Survey, Shanghai, China
X. Jiao
Key Laboratory of Land Subsidence, Shanghai Institute of Geological Survey, Shanghai, China
Related authors
Yueting Li, Matteo Frigo, Yan Zhang, Lin Zhu, Massimiliano Ferronato, Carlo Janna, Xulong Gong, Jun Yu, Pietro Teatini, and Shujun Ye
Proc. IAHS, 382, 511–514, https://doi.org/10.5194/piahs-382-511-2020, https://doi.org/10.5194/piahs-382-511-2020, 2020
A. Franceschini, P. Teatini, C. Janna, M. Ferronato, G. Gambolati, S. Ye, and D. Carreón-Freyre
Proc. IAHS, 372, 63–68, https://doi.org/10.5194/piahs-372-63-2015, https://doi.org/10.5194/piahs-372-63-2015, 2015
Short summary
Short summary
The stress variation induced by overdraft of aquifers in sedimentary basins may cause ground rupture in the form of activation of pre-existing faults or earth fissure generation. The process is severely threatening many areas in China and Mexico. Ruptures yield discontinuity in the displacement and stress fields that classic finite element (FE) models cannot address. We proved how Lagrangian approach provides more stable solutions than Penalty approach.
S. Ye, Y. Wang, J. Wu, P. Teatini, J. Yu, X. Gong, and G. Wang
Proc. IAHS, 372, 249–253, https://doi.org/10.5194/piahs-372-249-2015, https://doi.org/10.5194/piahs-372-249-2015, 2015
Ziyue Yin, Jian Song, Dianguang Liu, Jianfeng Wu, Yun Yang, Yuanyuan Sun, and Jichun Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-387, https://doi.org/10.5194/hess-2024-387, 2024
Preprint under review for HESS
Short summary
Short summary
Mining activities threaten aquatic ecosystems, soil ecosystems, and human health worldwide. This study established a high-quality database and a national 0.5° gridded dataset to reveal the status and spatial pattern of mining-affected water pollution, human health risks, and their potential multifaceted challenges. It provides in-depth insights to guide policymakers in designing differentiated management strategies for the sustainable development of mines.
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 24, 5903–5917, https://doi.org/10.5194/hess-24-5903-2020, https://doi.org/10.5194/hess-24-5903-2020, 2020
Short summary
Short summary
A new criterion (χi) is proposed to estimate representative elementary volume (REV) of a translucent material based on light transmission techniques. This study is essential for quantitative investigation of the scale effect of porous media and contaminant transformation. The fluid and contaminant migration and transform in porous media can be simulated accurately according to the REV estimation results using the light transmission technique and the appropriate criterion χi.
Jian Song, Yun Yang, Xiaomin Sun, Jin Lin, Ming Wu, Jianfeng Wu, and Jichun Wu
Hydrol. Earth Syst. Sci., 24, 2323–2341, https://doi.org/10.5194/hess-24-2323-2020, https://doi.org/10.5194/hess-24-2323-2020, 2020
Short summary
Short summary
We proposed a novel many-objective simulation-optimization framework for conjunctive use of surface water and groundwater in Yanqi Basin, northwest China. The management model involving socioeconomic and environmental objectives was constructed to explore optimal water-use schemes. Three runoff scenarios were then specified to quantify the effect of runoff reduction related to climate change on water management. Results provide Pareto-optimal solutions for basin-scale water management.
Claudia Zoccarato, Torbjörn E. Törnqvist, Pietro Teatini, and Jonathan G. Bridgeman
Proc. IAHS, 382, 565–570, https://doi.org/10.5194/piahs-382-565-2020, https://doi.org/10.5194/piahs-382-565-2020, 2020
Roberto Tomás, José Luis Pastor, Marta Béjar-Pizarro, Roberta Bonì, Pablo Ezquerro, José Antonio Fernández-Merodo, Carolina Guardiola-Albert, Gerardo Herrera, Claudia Meisina, Pietro Teatini, Francesco Zucca, Claudia Zoccarato, and Andrea Franceschini
Proc. IAHS, 382, 353–359, https://doi.org/10.5194/piahs-382-353-2020, https://doi.org/10.5194/piahs-382-353-2020, 2020
Pietro Teatini, Cristina Da Lio, Luigi Tosi, Alessandro Bergamasco, Stefano Pasqual, Paolo Simonini, Veronica Girardi, Paolo Zorzan, Claudia Zoccarato, Massimiliano Ferronato, Marcella Roner, Marco Marani, Andrea D'Alpaos, Simonetta Cola, and Giuseppe Zambon
Proc. IAHS, 382, 345–351, https://doi.org/10.5194/piahs-382-345-2020, https://doi.org/10.5194/piahs-382-345-2020, 2020
Short summary
Short summary
An in-situ loading test was carried out in the Lazzaretto Nuovo salt-marsh in the Venice Lagoon, Italy. The test was aimed at characterizing the geotechnical properties of soils forming the marsh sedimentary body deposits. In fact porosity and compressibility are of paramount importance to quantify consolidation versus accretion and relative sea level rise. The fate of coastal marshlands in the next future will strongly depend of these processes.
Roberta Bonì, Claudia Meisina, Pietro Teatini, Francesco Zucca, Claudia Zoccarato, Andrea Franceschini, Pablo Ezquerro, Marta Béjar-Pizarro, José A. Fernández-Merodo, Carolina Guardiola-Albert, José L. Pastor, Roberto Tomás, and Gerardo Herrera
Proc. IAHS, 382, 409–414, https://doi.org/10.5194/piahs-382-409-2020, https://doi.org/10.5194/piahs-382-409-2020, 2020
Short summary
Short summary
The potential of the integrated use of A-DInSAR data and 3D groundwater flow and geomechanical models to capture and assess aquifer dynamics is performed. The approach has been applied to investigate the response during and after pumping of a portion of the Madrid aquifer. The short time delay (about one month) between the groundwater pumping and the system response (land displacements) are likely due to a minor role played by the clayey layers.
Laura Gazzola, Massimiliano Ferronato, Matteo Frigo, Pietro Teatini, Claudia Zoccarato, Anna Antonia Irene Corradi, Maria Carolina Dacome, Ernesto Della Rossa, Michela De Simoni, and Stefano Mantica
Proc. IAHS, 382, 457–462, https://doi.org/10.5194/piahs-382-457-2020, https://doi.org/10.5194/piahs-382-457-2020, 2020
Massimiliano Ferronato, Matteo Frigo, Laura Gazzola, Pietro Teatini, and Claudia Zoccarato
Proc. IAHS, 382, 83–87, https://doi.org/10.5194/piahs-382-83-2020, https://doi.org/10.5194/piahs-382-83-2020, 2020
Short summary
Short summary
The regular monitoring of radioactive marker positions along a vertical borehole can provide in-situ measurements of deep rock compaction. Developed in the ‘70s, in recent years the effectiveness of this technology has been often debated. The present communication analyses the state of the art of the radioactive marker technique and provides a critical review on the role that these measurements might play in the future evolution of land subsidence monitoring and modelling.
Luigi Bruno, Bruno Campo, Bianca Costagli, Esther Stouthamer, Pietro Teatini, Claudia Zoccarato, and Alessandro Amorosi
Proc. IAHS, 382, 285–290, https://doi.org/10.5194/piahs-382-285-2020, https://doi.org/10.5194/piahs-382-285-2020, 2020
Short summary
Short summary
The effects of land subsidence could be devastating on heavily settled coastal plains. In a scenario of sea-level rise, high costs are expected to protect coastal cities and touristic hotspots and to keep drained reclaimed lands. In this work, we calculated subsidence rates (SR) in the Po coastal plain, over the last 5.6 and 120 thousand years, providing information about land movements before human intervention became the main driver of subsidence, through water and gas withdrawal.
Luigi Tosi, Cristina Da Lio, Sandra Donnici, Tazio Strozzi, and Pietro Teatini
Proc. IAHS, 382, 689–695, https://doi.org/10.5194/piahs-382-689-2020, https://doi.org/10.5194/piahs-382-689-2020, 2020
Short summary
Short summary
The Venice coastland forms the major low-lying area in Italy and encompasses a variety of environments, such as farmlands, estuaries, deltas, lagoons and urbanized areas. Since most of the territory lies at a ground elevation below or slightly above the mean sea-level, also a few mm/yr of land subsidence can seriously impacts on the coastal system. In this study, we present an analysis of the vulnerability to relative sea-level rise (RSLR) considering an uneven land subsidence distribution.
Matteo Frigo, Massimiliano Ferronato, Laura Gazzola, Pietro Teatini, Claudia Zoccarato, Massimo Antonelli, Anna Antonia Irene Corradi, Maria Carolina Dacome, Michela De Simoni, and Stefano Mantica
Proc. IAHS, 382, 449–455, https://doi.org/10.5194/piahs-382-449-2020, https://doi.org/10.5194/piahs-382-449-2020, 2020
Short summary
Short summary
The numerical prediction of land subsidence above producing reservoirs can be affected by a number of uncertainties due to several factors. In this work, we use a Bayesian approach to reduce the initial uncertainties about the mechanical parameters in order to improve the reliability of land subsidence predictions.
The numerical results obtained in an experiment on a real-world gas field confirms that is a valuable and effective approach.
Giovanni Isotton, Pietro Teatini, Raffaele Stefanelli, Massimiliano Ferronato, Carlo Janna, Matteo Cerri, and Timur Gukov
Proc. IAHS, 382, 475–480, https://doi.org/10.5194/piahs-382-475-2020, https://doi.org/10.5194/piahs-382-475-2020, 2020
Yun Zhang, Guofeng He, Jichun Wu, Zhiduo Zhu, Xuexin Yan, and Tianliang Yang
Proc. IAHS, 382, 387–390, https://doi.org/10.5194/piahs-382-387-2020, https://doi.org/10.5194/piahs-382-387-2020, 2020
Short summary
Short summary
Groundwater pumping can cause severe land subsidence and decrease ground surface level. A physical model test were conducted to mimic this process. An interesting phenomenon is that, due to their low permeability, aquitard units may expand in a period when groundwater is withdrawn from the neighboring aquifer units, and they may compact when groundwater is recharged into the neighbor aquifer units.
Jinxin Lin, Hanmei Wang, Tianliang Yang, and Xinlei Huang
Proc. IAHS, 382, 131–135, https://doi.org/10.5194/piahs-382-131-2020, https://doi.org/10.5194/piahs-382-131-2020, 2020
Mariano Cerca, Dora Carreón-Freyre, and Pietro Teatini
Proc. IAHS, 382, 433–436, https://doi.org/10.5194/piahs-382-433-2020, https://doi.org/10.5194/piahs-382-433-2020, 2020
Short summary
Short summary
This work reports results of experiments made in analogue materials reproducing the occurrence and propagation of fractures associated with land subsidence driven by groundwater pumping. We compare the physical experimental model results with a numerical model that tests the development of stresses above a bedrock ridge that forms the base of an aquifer.
Yueting Li, Matteo Frigo, Yan Zhang, Lin Zhu, Massimiliano Ferronato, Carlo Janna, Xulong Gong, Jun Yu, Pietro Teatini, and Shujun Ye
Proc. IAHS, 382, 511–514, https://doi.org/10.5194/piahs-382-511-2020, https://doi.org/10.5194/piahs-382-511-2020, 2020
Pietro Teatini, Claudia Zoccarato, Massimiliano Ferronato, Andrea Franceschini, Matteo Frigo, Carlo Janna, and Giovanni Isotton
Proc. IAHS, 382, 539–545, https://doi.org/10.5194/piahs-382-539-2020, https://doi.org/10.5194/piahs-382-539-2020, 2020
Short summary
Short summary
A critical issue concerning geomechanical safety for underground gas storage in compartmentalized reservoirs is fault reactivation. An in-depth modelling investigation was carried out for the typical UGS geological setting and operations in the Netherlands. The specific goals of the study are explaining the mechanisms responsible for seismic events unexpectedly recorded during UGS phases and understanding which are the critical factors that increase the probability of fault reactivation.
Jianxiu Wang, Yansheng Deng, Na Xu, Tianliang Yang, Xuexin Yan, Hanmei Wang, Xinlei Huang, Xiaotian Liu, and Xiangjun Pei
Proc. IAHS, 382, 559–564, https://doi.org/10.5194/piahs-382-559-2020, https://doi.org/10.5194/piahs-382-559-2020, 2020
Short summary
Short summary
In Shanghai, China, land subsidence is distributed along the belt near a subway line. In order to figure out the mechanical response of the tunnel surroundings, the PFC2D software based on a discrete element method is introduced to simulate the section of the metro tunnel. The linear contact bond model was employed to reflect the characteristics of clay. The mechanical response law and subsidence mechanism were investigated.
Pengcheng Xu, Dong Wang, Vijay P. Singh, Yuankun Wang, Jichun Wu, Huayu Lu, Lachun Wang, Jiufu Liu, and Jianyun Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-358, https://doi.org/10.5194/hess-2019-358, 2019
Revised manuscript not accepted
Short summary
Short summary
In this study, a multivariate nonstationary risk analysis of annual extreme rainfall events, extracted from daily precipitation data observed at six meteorological stations in Haihe River basin, China, was done in three phases: (1) Several statistical tests, were applied to both the marginal distributions and the dependence structures to decipher different forms of nonstationarity; (2) Time-dependent copulas were adopted to model the distribution structure.
Luigi Tosi, Cristina Da Lio, Pietro Teatini, Antonio Menghini, and Andrea Viezzoli
Proc. IAHS, 379, 387–392, https://doi.org/10.5194/piahs-379-387-2018, https://doi.org/10.5194/piahs-379-387-2018, 2018
Short summary
Short summary
We have depicted the continental and marine surficial water–groundwater interactions in a large portion of the coastland encompassing the southern Venice lagoon and the northern Po river delta. The saltwater-fresh water transition zone is very irregularly-shaped and mainly depends on the morphologic setting and the subsoil architecture. An over-consolidated Pleistocene clay layer and buried Holocene sandy paleo-channels and paleo-ridge systems controlled the
saltwater-fresh water exchanges.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 22, 1001–1015, https://doi.org/10.5194/hess-22-1001-2018, https://doi.org/10.5194/hess-22-1001-2018, 2018
Short summary
Short summary
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are developed in this study. Results suggest RTA can cause more groundwater contamination and make remediation more difficult. In contrast, the cleanup of contaminants in aquifers with SPA is easier. This study demonstrates how microscale arrangements control contaminant migration and remediation, which is helpful in designing successful remediation schemes for subsurface contamination.
Pietro Teatini, Giovanni Isotton, Stefano Nardean, Massimiliano Ferronato, Annamaria Mazzia, Cristina Da Lio, Luca Zaggia, Debora Bellafiore, Massimo Zecchin, Luca Baradello, Francisco Cellone, Fabiana Corami, Andrea Gambaro, Giovanni Libralato, Elisa Morabito, Annamaria Volpi Ghirardini, Riccardo Broglia, Stefano Zaghi, and Luigi Tosi
Hydrol. Earth Syst. Sci., 21, 5627–5646, https://doi.org/10.5194/hess-21-5627-2017, https://doi.org/10.5194/hess-21-5627-2017, 2017
Short summary
Short summary
We investigate the effects of digging a navigable canal on the hydrogeological system underlying a coastal lagoon. The research has been promoted by the Venice Water Authority, which is investigating different possibilities to avoid the passage of large cruise ships through the historic center of Venice, Italy. Numerical simulations supported by a proper hydrogeological characterization show that the exchange of water and contaminants from the subsurface and surface systems will be significant.
Ahmad Ali Behroozmand, Pietro Teatini, Jesper Bjergsted Pedersen, Esben Auken, Omar Tosatto, and Anders Vest Christiansen
Hydrol. Earth Syst. Sci., 21, 1527–1545, https://doi.org/10.5194/hess-21-1527-2017, https://doi.org/10.5194/hess-21-1527-2017, 2017
Short summary
Short summary
Within the framework of the EU project IMPROWARE, our goal was to investigate a Mediterranean coastal aquifer in Egypt and develop scenarios for artificial aquifer remediation and recharge. The results of an extensive hydrogeophysical investigation were successfully used as an input in regional and local hydrological models to understand the hydrological evolution of the area. The research outcomes clearly highlight the effectiveness of using advanced geophysical and modeling methodologies.
Lin Zhu, Huili Gong, Zhenxue Dai, Gaoxuan Guo, and Pietro Teatini
Hydrol. Earth Syst. Sci., 21, 721–733, https://doi.org/10.5194/hess-21-721-2017, https://doi.org/10.5194/hess-21-721-2017, 2017
Short summary
Short summary
We developed a method to characterize the distribution and variance of the hydraulic conductivity k in a multiple-zone alluvial fan by fusing multiple-source data. Consistently with the scales of the sedimentary transport energy, the k variance of the various facies decreases from the upper to the lower portion along the flow direction. The 3-D distribution of k is consistent with that of the facies. The potentialities of the proposed approach are tested on the Chaobai River megafan, China.
J. Liu, H. Wang, and X. Yan
Proc. IAHS, 372, 543–553, https://doi.org/10.5194/piahs-372-543-2015, https://doi.org/10.5194/piahs-372-543-2015, 2015
Z. Wang, Y. Zhang, J. Wu, J. Yu, and X. Gong
Proc. IAHS, 372, 395–398, https://doi.org/10.5194/piahs-372-395-2015, https://doi.org/10.5194/piahs-372-395-2015, 2015
T. L. Yang, X. X. Yan, H. M. Wang, X. L. Huang, and G. H. Zhan
Proc. IAHS, 372, 1–5, https://doi.org/10.5194/piahs-372-1-2015, https://doi.org/10.5194/piahs-372-1-2015, 2015
C. Zoccarato, D. Baù, F. Bottazzi, M. Ferronato, G. Gambolati, S. Mantica, and P. Teatini
Proc. IAHS, 372, 351–356, https://doi.org/10.5194/piahs-372-351-2015, https://doi.org/10.5194/piahs-372-351-2015, 2015
A. Franceschini, P. Teatini, C. Janna, M. Ferronato, G. Gambolati, S. Ye, and D. Carreón-Freyre
Proc. IAHS, 372, 63–68, https://doi.org/10.5194/piahs-372-63-2015, https://doi.org/10.5194/piahs-372-63-2015, 2015
Short summary
Short summary
The stress variation induced by overdraft of aquifers in sedimentary basins may cause ground rupture in the form of activation of pre-existing faults or earth fissure generation. The process is severely threatening many areas in China and Mexico. Ruptures yield discontinuity in the displacement and stress fields that classic finite element (FE) models cannot address. We proved how Lagrangian approach provides more stable solutions than Penalty approach.
L. Tosi, T. Strozzi, C. Da Lio, and P. Teatini
Proc. IAHS, 372, 199–205, https://doi.org/10.5194/piahs-372-199-2015, https://doi.org/10.5194/piahs-372-199-2015, 2015
Short summary
Short summary
Eighty regular TerraSAR-X acquisitions over the 2008-2011 period significantly improve the subsidence monitoring at the Venice coastland. Settlements of 30-35 mm/yr have been detected at the three lagoon inlets in correspondence of the MoSE works. The Venice and Chioggia historical centers show local sinking bowls up to 10 mm/yr connected with the construction of new large buildings or restoration works. In the city of Venice, the mean subsidence of 1.1±1.0 mm/yr confirms its general stability.
X. Jiao, X. X. Yan, and H. M. Wang
Proc. IAHS, 372, 475–479, https://doi.org/10.5194/piahs-372-475-2015, https://doi.org/10.5194/piahs-372-475-2015, 2015
S. Ye, Y. Wang, J. Wu, P. Teatini, J. Yu, X. Gong, and G. Wang
Proc. IAHS, 372, 249–253, https://doi.org/10.5194/piahs-372-249-2015, https://doi.org/10.5194/piahs-372-249-2015, 2015
G. Isotton, M. Ferronato, G. Gambolati, and P. Teatini
Proc. IAHS, 372, 519–523, https://doi.org/10.5194/piahs-372-519-2015, https://doi.org/10.5194/piahs-372-519-2015, 2015
L. Tosi, E. E. Kruse, F. Braga, E. S. Carol, S. C. Carretero, J. L. Pousa, F. Rizzetto, and P. Teatini
Nat. Hazards Earth Syst. Sci., 13, 523–534, https://doi.org/10.5194/nhess-13-523-2013, https://doi.org/10.5194/nhess-13-523-2013, 2013
Cited articles
Biot, M. A.: General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155–164, 1941.
Gambolati, G., Teatini, P., Bau, D., and Ferronato, M.: Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy, Water Resour. Res., 36, 2443–2459, 2000.
Gu, X. Y., Gong, S. L., and Huang, H. C.: Quantitative study of land subsidence in Shanghai, Proc. VI International Congress of IAEG, 1990.
Gu, X. Y., Tsien, S. I., Huang H. C., Liu, Y.: Analysis of Shanghai Land Subsidence, Proc. IV International Symposium on Land subsidence, Publ. 200, 603–612, 1991.
Gu, X. Y., Deng, W., Xu, D. N., and Liu, Y.: Computation of land subsidence in Shanghai with secondary consolidation effect, Proc. International conference on soft soil engineering, 65–70, 1993.
Shi, X., Wu, J., Ye, S., Zhang, Y., Xue, Y. Q., Wei, Z. X., Li, Q. F., and Yu, J.: Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China. Eng. Geol., 100, 27–42, 2008.
Teatini, P., Ferronato, M., Gambolati, G., and Gonella, M.: Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend, Water Resour. Res., 42, W01406, https://doi.org/10.1029/2005WR004242, 2006.
Teatini, P., Ferronato, M., Gambolati, G., Ba\`u, D., and Putti, M.: Anthropogenic Venice uplift by seawater pumping into a heterogeneous aquifer system, Water Resour. Res., 46, W11547, https://doi.org/10.1029/2010WR009161, 2010.
Verruijt, A.: Elastic storage of aquifers, in: Flow through porous media, Academic Press, New York, 331–375, 1969.
Wu, J., Shi, X., Ye, S. J., Xue, Y. Q., Zhang, Y., Wei, Z. X., and Fang, Z.: Numerical Simulation of Viscoelastoplastic Land Subsidence due to Groundwater Overdrafting in Shanghai, China. J. Hydrologic Eng., 15, 223–236, 2010.
Xue, Y, Wu, J., Zhang, Y., Ye, S., Shi, X. Q., Wei, Z.X., Li, Q. F., and Yu, J.: Simulation of regional land subsidence in the southern Yangtze Delta, Science in China Series D-Earth Sciences, 51, 808–825, 2008.
Ye, S.: Study on the Regional Land Subsidence Model and Its Application, Ph.D Thesis, Nanjing University, China, 2004.
Ye, S., Xue, Y., Wu, J., Zhang, Y., Wei, Z. X., and Li, Q. F.: Regional land subsidence model embodying complex deformation, ICE-Water Management, 164, WM10, 519–531, 2011.
Ye, S., Xue, Y., and Wu, J. C., and Li, Q. F.: Modeling visco-elastic-plastic deformation of soil with Modified Merchant Model, Environ. Earth Sci., 66, 1497–1504, 2012.
Ye, S. J., Xue, Y. Q., Wu, J. C., Zhang, Y., Wu, J. F., and Li, Q.: Study on the groundwater flow model for land subsidence modeling in Shanghai, Proc of the Seventh International Symposium on Land Subsidence, Shanghai, China, 2005.
Zhang, A. G. and Wei, Z. X.: Past, present and future research on land subsidence in Shanghai (in Chinese), Hydrogeol. Eng. Geol., 33, 72–75, 2002.