Articles | Volume 383
https://doi.org/10.5194/piahs-383-255-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-383-255-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved understanding of the Senegal floodplain socio-hydrosystems with multi-scalar earth observations
G-EAU, AgroParisTech, CIRAD, IRD, IRSTEA, Montpellier SupAgro, Univ
Montpellier, Montpellier, France
ISRA BAME, Dakar, Senegal
Jean-Christophe Poussin
G-EAU, AgroParisTech, CIRAD, IRD, IRSTEA, Montpellier SupAgro, Univ
Montpellier, Montpellier, France
Jean-Claude Bader
G-EAU, AgroParisTech, CIRAD, IRD, IRSTEA, Montpellier SupAgro, Univ
Montpellier, Montpellier, France
Didier Martin
G-EAU, AgroParisTech, CIRAD, IRD, IRSTEA, Montpellier SupAgro, Univ
Montpellier, Montpellier, France
Gora Ndiaye
Commission Permanente des Eaux, OMVS, Dakar, BP 3152, Senegal
Djiby Dia
ISRA BAME, Dakar, Senegal
Related authors
Ansoumana Bodian, Papa Malick Ndiaye, Serigne Bassirou Diop, Lamine Diop, Alain Dezetter, Andrew Ogilvie, and Koffi Djaman
Proc. IAHS, 385, 415–421, https://doi.org/10.5194/piahs-385-415-2024, https://doi.org/10.5194/piahs-385-415-2024, 2024
Short summary
Short summary
Reference evapotranspiration (ET0) is an essential parameter for hydrological modeling, irrigation planning and for studying the impacts of climate change on water resources. This work evaluate 20 alternative methods of estimating ET0 in order to adapt them to the climatic context of the 3 mains basins of Senegal where very little climate data is available. The methods of Valiantzas 1, Doorenboss & Pruitt and Penman are the most robust for the estimation of ET0 in this context.
Papa Malick Ndiaye, Ansoumana Bodian, Serigne Bassirou Diop, Lamine Diop, Alain Dezetter, Andrew Ogilvie, and Koffi Djaman
Proc. IAHS, 385, 305–311, https://doi.org/10.5194/piahs-385-305-2024, https://doi.org/10.5194/piahs-385-305-2024, 2024
Short summary
Short summary
The analyze of the trends of ET0 at the scale of the Senegal, Gambia and Casamance river basins using reanalyze data of NASA/POWER over 1984–2019 shows that ET0 increases significantly in 32% of the Senegal basin and decreases in less than 1% of it. In the Casamance and Gambia basins, the annual ET0 drops by 65% and 18%, respectively. Temperature and relative humidity show an increasing trend over all basins while wind speed and radiation decrease, confirming the so-called "evaporation paradox".
Jean-Emmanuel Paturel, Bérenger Kouacou, Franck Lohou, Frédéric Pons, Kouakou Dje, Naky Coulibaly, Harouna Karambiri, Valérie Borrell, Andrew Ogilvie, and Eric Servat
Proc. IAHS, 385, 219–224, https://doi.org/10.5194/piahs-385-219-2024, https://doi.org/10.5194/piahs-385-219-2024, 2024
Short summary
Short summary
In 2011, the XVI World Meteorological Congress urged Members to make every effort to prevent the deterioration of climate-relevant data and to make these data available to support climate change analyses and relevant climate services. In response to the WMO call, we used the NUNIEAU software which allows the digitization of different types of paper documents by automatic recognition. This software has been used on rainfall pluviograms in Burkina Faso and Côte d'Ivoire.
Gil Mahé, Gamal Abdo, Ernest Amoussou, Telesphore Brou, Stephan Dietrich, Ahmed El Tayeb, Henny van Lanen, Mohamed Meddi, Anil Mishra, Didier Orange, Thi Phuong Quynh Le, Raphael Tshimanga, Patrick Valimba, Santiago Yepez, Andrew Ogilvie, and Oula Amrouni
Proc. IAHS, 384, 5–18, https://doi.org/10.5194/piahs-384-5-2021, https://doi.org/10.5194/piahs-384-5-2021, 2021
Short summary
Short summary
The FRIEND-Water program (FWP) is the oldest and the most transverse program within the UNESCO IHP. It allows large communities of hydrologists to collaborate across borders on common shared data and scientific topics, addressed through 8 large world regions. Research priorities evolve according to the projections given by the member States during the IHP councils. FWP further activities follow the IHP IX program with the support of the Montpellier UNESCO Category II Center ICIREWAD.
Andrew Ogilvie, Gilles Belaud, Sylvain Massuel, Mark Mulligan, Patrick Le Goulven, and Roger Calvez
Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, https://doi.org/10.5194/hess-22-4349-2018, 2018
Short summary
Short summary
Accurate monitoring of surface water extent is essential for hydrological investigation of small lakes (1–10 ha), which supports millions of smallholder farmers. Landsat monitoring of long-term surface water dynamics is shown to be suited to lakes over 3 ha based on extensive hydrometric data from seven field sites over 15 years. MNDWI water classification optimized here for the specificities of small water bodies reduced mean surface area errors by 57 % compared to published global datasets.
Ansoumana Bodian, Papa Malick Ndiaye, Serigne Bassirou Diop, Lamine Diop, Alain Dezetter, Andrew Ogilvie, and Koffi Djaman
Proc. IAHS, 385, 415–421, https://doi.org/10.5194/piahs-385-415-2024, https://doi.org/10.5194/piahs-385-415-2024, 2024
Short summary
Short summary
Reference evapotranspiration (ET0) is an essential parameter for hydrological modeling, irrigation planning and for studying the impacts of climate change on water resources. This work evaluate 20 alternative methods of estimating ET0 in order to adapt them to the climatic context of the 3 mains basins of Senegal where very little climate data is available. The methods of Valiantzas 1, Doorenboss & Pruitt and Penman are the most robust for the estimation of ET0 in this context.
Papa Malick Ndiaye, Ansoumana Bodian, Serigne Bassirou Diop, Lamine Diop, Alain Dezetter, Andrew Ogilvie, and Koffi Djaman
Proc. IAHS, 385, 305–311, https://doi.org/10.5194/piahs-385-305-2024, https://doi.org/10.5194/piahs-385-305-2024, 2024
Short summary
Short summary
The analyze of the trends of ET0 at the scale of the Senegal, Gambia and Casamance river basins using reanalyze data of NASA/POWER over 1984–2019 shows that ET0 increases significantly in 32% of the Senegal basin and decreases in less than 1% of it. In the Casamance and Gambia basins, the annual ET0 drops by 65% and 18%, respectively. Temperature and relative humidity show an increasing trend over all basins while wind speed and radiation decrease, confirming the so-called "evaporation paradox".
Jean-Emmanuel Paturel, Bérenger Kouacou, Franck Lohou, Frédéric Pons, Kouakou Dje, Naky Coulibaly, Harouna Karambiri, Valérie Borrell, Andrew Ogilvie, and Eric Servat
Proc. IAHS, 385, 219–224, https://doi.org/10.5194/piahs-385-219-2024, https://doi.org/10.5194/piahs-385-219-2024, 2024
Short summary
Short summary
In 2011, the XVI World Meteorological Congress urged Members to make every effort to prevent the deterioration of climate-relevant data and to make these data available to support climate change analyses and relevant climate services. In response to the WMO call, we used the NUNIEAU software which allows the digitization of different types of paper documents by automatic recognition. This software has been used on rainfall pluviograms in Burkina Faso and Côte d'Ivoire.
Gil Mahé, Gamal Abdo, Ernest Amoussou, Telesphore Brou, Stephan Dietrich, Ahmed El Tayeb, Henny van Lanen, Mohamed Meddi, Anil Mishra, Didier Orange, Thi Phuong Quynh Le, Raphael Tshimanga, Patrick Valimba, Santiago Yepez, Andrew Ogilvie, and Oula Amrouni
Proc. IAHS, 384, 5–18, https://doi.org/10.5194/piahs-384-5-2021, https://doi.org/10.5194/piahs-384-5-2021, 2021
Short summary
Short summary
The FRIEND-Water program (FWP) is the oldest and the most transverse program within the UNESCO IHP. It allows large communities of hydrologists to collaborate across borders on common shared data and scientific topics, addressed through 8 large world regions. Research priorities evolve according to the projections given by the member States during the IHP councils. FWP further activities follow the IHP IX program with the support of the Montpellier UNESCO Category II Center ICIREWAD.
Andrew Ogilvie, Gilles Belaud, Sylvain Massuel, Mark Mulligan, Patrick Le Goulven, and Roger Calvez
Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, https://doi.org/10.5194/hess-22-4349-2018, 2018
Short summary
Short summary
Accurate monitoring of surface water extent is essential for hydrological investigation of small lakes (1–10 ha), which supports millions of smallholder farmers. Landsat monitoring of long-term surface water dynamics is shown to be suited to lakes over 3 ha based on extensive hydrometric data from seven field sites over 15 years. MNDWI water classification optimized here for the specificities of small water bodies reduced mean surface area errors by 57 % compared to published global datasets.
B. Auvet, B. Lidon, B. Kartiwa, Y. Le Bissonnais, and J.-C. Poussin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-9701-2015, https://doi.org/10.5194/hessd-12-9701-2015, 2015
Revised manuscript has not been submitted
Cited articles
Descroix, L., Guichard, F., Grippa, M., Lambert, L. A., Panthou, G., Mahé, G., Gal, L., Dardel, C., Quantin, G., Kergoat, L., Bouaïta, Y., Hiernaux, P., Vischel, T., Pellarin, T., Faty, B., Wilcox, C., Malam Abdou, M., Mamadou, I., Vandervaere, J.-P., Diongue-Niang, A., Ndiaye, O., Sané, Y., Dacosta, H., Gosset, M., Cassé, C., Sultan, B., Barry, A., Amogu, O., Nka Nnomo, B., Barry, A., and Paturel, J.-E. : Evolution of surface hydrology in the Sahelo-sudanian strip: An updated
review, Water, 10, 748, https://doi.org/10.3390/w10060748, 2018.
Hagolle, O., Huc, M., Pascual, D., and Dedieu, G.: A Multi-Temporal and
Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for
the Atmospheric Correction of FormoSat-2, LandSat, VENUS and Sentinel-2
Images, Remote Sens., 7, 2668–2691, https://doi.org/10.3390/rs70302668, 2015.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: Panta Rhei-Everything Flows: Change in
hydrology and society-The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J.,
58, 1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Neal, J., Schumann, G., and Bates, P.: A subgrid channel model for
simulating river hydraulics and floodplain inundation over large and data
sparse areas, Water Resour. Res., 48, W11506, https://doi.org/10.1029/2012WR012514, 2012.
Ogilvie, A., Belaud, G., Delenne, C., Bailly, J. S., Bader, J.-C.,
Oleksiak, A., Ferry, L., and Martin, D.: Decadal monitoring of the Niger
Inner Delta flood dynamics using MODIS optical data, J. Hydrol., 523,
368–383, https://doi.org/10.1016/j.jhydrol.2015.01.036, 2015.
Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., and Calvez, R.: Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series, Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, 2018.
Sivapalan, M., Savenije, H., and Bloschl, G.: Socio-hydrology: A new science
of people and water, Hydrol. Process., 26, 12700–1276,
https://doi.org/10.1002/hyp.8426, 2012.
Xu, H.: Modification of normalised difference water index (NDWI) to enhance
open water features in remotely sensed imagery, Int. J. Remote Sens., 27,
3025–3033,
https://doi.org/10.1080/01431160600589179, 2006.
Zeng, C., Shen, H., and Zhang, L.: Recovering missing pixels for Landsat
ETMC SLC-off imagery using multi-temporal regression analysis and a
regularization method, Remote Sens. Environ., 131, 182–194,
https://doi.org/10.1016/j.rse.2012.12.012, 2013.
Zhu, Z. and Woodcock, C. E.: Automated cloud, cloud shadow, and snow
detection in multitemporal Landsat data: An algorithm designed specifically
for monitoring land cover change, Remote Sens. Environ., 152, 217–234,
https://doi.org/10.1016/j.rse.2014.06.012, 2015.
Short summary
Rising availability of remote sensing imagery provide novel opportunities to improve the understanding of the hydrology of multiple water bodies. The analysis of 443 Landsat images between 1984–2017 and 48 Sentinel-2 images between 2015–2017 confirms the possibility of monitoring floods within individual depressions of the Senegal River floodplain. First results based on in situ data also reveal the potential to refine hydrological relationships between the water height and the flooded area.
Rising availability of remote sensing imagery provide novel opportunities to improve the...