Articles | Volume 385
https://doi.org/10.5194/piahs-385-489-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-385-489-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The International Commission on Continental Erosion (ICCE): a brief overview of its scientific focus and example outputs
Adrian L. Collins
CORRESPONDING AUTHOR
Net Zero and Resilient Farming, Rothamsted Research, Okehampton, EX20 2SB, UK
Des E. Walling
Geography, Faculty of Environment, Science & Economy, University of Exeter, Exeter, EX4 4RJ, UK
Valentin Golosov
Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russia
Institute of Geography, Russian Academy of Science, Moscow, 119017, Russia
Paolo Porto
Department of Agraria, University Mediterranea of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
Faculty of Geographical Sciences, Kazimierz Wielki University, 85-033 Bydgoszcz, Poland
Allen C. Gellis
U.S. Geological Survey, Baltimore, MD, USA
Yuri Jaques da Silva
Agronomy Department, Federal University of Piauí (UFPI), Planalto Horizonte/Bom Jesus – PI, 64900-000, Brazil
Sergey Chalov
Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russia
Related authors
Sheena A. Spencer, Axel E. Anderson, Uldis Silins, and Adrian L. Collins
Hydrol. Earth Syst. Sci., 25, 237–255, https://doi.org/10.5194/hess-25-237-2021, https://doi.org/10.5194/hess-25-237-2021, 2021
Short summary
Short summary
We used unique chemical signatures of precipitation, hillslope soil water, and groundwater sources of streamflow to explore seasonal variation in runoff generation in a snow-dominated mountain watershed underlain by glacial till and permeable bedrock. Reacted hillslope water reached the stream first at the onset of snowmelt, followed by a dilution effect by snowmelt from May to June. Groundwater and riparian water were important sources later in the summer. Till created complex subsurface flow.
Sergey R. Chalov, Victor Ivanov, Danila Shkolnyi, Ekaterina Pavlyukevich, Michal Habel, Anna Kurakova, Dmitry Botavin, Aleksandra Chalova, Pavel Golovlev, Arseny Kamyshev, Roman Kolesnikov, Uliana Koneva, Nadezda Mikhailova, Elizaveta Tuzova, Kristina Prokopeva, Aleksandr Zavadsky, Rituparna Acharyya, Aleksandr Varenov, Leonid Turykin, Anna Tarbeeva, Daidu Fan, and Roman S. Chalov
Earth Syst. Sci. Data, 17, 5615–5639, https://doi.org/10.5194/essd-17-5615-2025, https://doi.org/10.5194/essd-17-5615-2025, 2025
Short summary
Short summary
This study presents a unique multi-tool dataset on riverbank migration across Northern Eurasia, covering 140 000 km of river channels over a period of up to 70 years. Using satellite imagery and field observations, we identify key drivers of bank erosion at a large spatial scale and highlight the role of river discharge and permafrost. The dataset enhances understanding of river channel dynamics and supports the development of predictive models for river channel evolution and erosion risk assessment.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Paolo Porto
Proc. IAHS, 387, 41–46, https://doi.org/10.5194/piahs-387-41-2024, https://doi.org/10.5194/piahs-387-41-2024, 2024
Short summary
Short summary
During the last decades, a general increase in heavy rainfall events has caused changes in soil erosion rates and strongly affected the human activities in mountain areas. In this context, plot experiments carried out in southern Italy that involve the use of 137Cs and 210Pbex measurements indicated an increase in soil erosion rates during the last 15–20 years and suggest the use of this technique to detect climate change in mountain areas.
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023, https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Short summary
Quantifying soil redistribution rates is a global challenge. Radiogenic tracers such as plutonium, namely 239+240Pu, released to the atmosphere by atmospheric bomb testing in the 1960s are promising tools to quantify soil redistribution. Direct validation of 239+240Pu as soil redistribution is, however, still missing. Here, we used a unique sediment yield time series in southern Italy, reaching back to the initial fallout of 239+240Pu to verify 239+240Pu as a soil redistribution tracer.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Sheena A. Spencer, Axel E. Anderson, Uldis Silins, and Adrian L. Collins
Hydrol. Earth Syst. Sci., 25, 237–255, https://doi.org/10.5194/hess-25-237-2021, https://doi.org/10.5194/hess-25-237-2021, 2021
Short summary
Short summary
We used unique chemical signatures of precipitation, hillslope soil water, and groundwater sources of streamflow to explore seasonal variation in runoff generation in a snow-dominated mountain watershed underlain by glacial till and permeable bedrock. Reacted hillslope water reached the stream first at the onset of snowmelt, followed by a dilution effect by snowmelt from May to June. Groundwater and riparian water were important sources later in the summer. Till created complex subsurface flow.
Cited articles
Amorim, F. F., da Silva, Y. J. A. B., Nascimento, R. C., da Silva, Y. G. A. B., Tiecher, T., do Nascimento, C. W. A., Minella, J. P. G., Zhang, Y., Upadhayay, H. R., Pulley, S., and Collins, A. L.: Sediment source apportionment using optical property composite signatures in a rural catchment, Brazil, Catena, 202, 105208, https://doi.org/10.1016/j.catena.2021.105208, 2021.
Bartley, R., Olley, J., and Henderson, A.: A sediment budget for the Herbert River catchment, North Queenland, Australia, in: Sediment transfer through the fluvial system, edited by: Golosov, V., Belyaev, V., and Walling, D. E., IAHS Press, Wallingford, IAHS Publ., 288, 147–154, 2004.
Bogen, J.: The impact of environmental changes on the sediment loads of Norwegian rivers, Catena, 79, 251–256, https://doi.org/10.1016/j.catena.2009.07.003, 2009.
Chalov, S., Golosov, V., Collins, A., and Stone, M.: Preface: Land use and climate change impacts on erosion and sediment transport, Proc. IAHS, 381, 1–1, https://doi.org/10.5194/piahs-381-1-2019, 2019.
Chalov, S. R.: Effects of placer mining on suspended sediment budget: case study of north of Russia's Kamchatka Peninsula, Hydrolog. Sci. J., 59, 1081–1094, https://doi.org/10.1080/02626667.2014.903330, 2014.
Collins, A. L., Zhang, Y., Walling, D. E., and Black, K.: Apportioning sediment sources in a grassland dominated agricultural catchment in the UK using a new tracing framework, in: Sediment dynamics for a changing future, Proc. IAHS, Wallingford, UK, 337, 68–75, 2010.
Collins, A. L., Foster, I., Zhang, Y., Gooday, R., Lee, D., Sear, D., Naden, P., and Jones, I.: Assessing “modern background sediment delivery to rivers” across England and Wales and its use for catchment management, in: Erosion and Sediment Yields in the Changing Environment, Proc. IAHS, 358, 125–131, 2012.
Collins, A. L., Blackwell, M., Boerckx, P., Chivers, C.-A., Emelko, E., Evrard, O., Foster, I., Gellis, A., Gholami, H., Granger, S., Harris, P., Horowitz, A. J., Laceby, J. P., Martinez-Carreras, N., Minella, J., Mol, L., Nosrati, K., Pulley, S.,, Silins, U., Jacques da Silva, Y., Stone, M., Tiecher, T., Upadhayay, H. R., and Zhang, Y.: Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes, J. Soil. Sediment., 20, 4160–4193, https://doi.org/10.1007/s11368-020-02755-4, 2020.
Dedkov, A.: The relationship between sediment yield and drainage basin area, Sediment Transfer through the Fluvial System, Proceedings of a symposium held in Moscow, Russia, August 2004, IAHS Publ., 288, 197–204, ISBN 1-901502-67-8, 2004.
de Figueiredo, E. and Davi, H.: MOSESS: a model for soil erosion prediction at small scales, in: Sediment Dynamics and the Hydromorphology of Fluvial Systems, Proc. IAHS, 306, 556–563, 2006.
Dos Santos, I., Andriolo, M. F., Gibertoni, R. C., and Kobiyama, M.: Use of the SWAT model to evaluate the impact of different land use scenarios on discharge and sediment transport in the Apucaraninha River watershed, southern Brazil, in: Sediment Dynamics in a Changing Future, Proc. IAHS, 337, 322–328, 2010.
Favis-Mortlock, D., Boardman, J., Foster, I., and Shepheard, M.: Comparison of observed and DEM-driven field-to-river routing of flow from eroding fields in an arable lowland catchment, Catena, 208, 105737, https://doi.org/10.1016/j.catena.2021.105737, 2022.
Fitrzyk, M.: Determining soil erosion by water using high resolution remotely-sensed data, in: Erosion and Sediment Yields in the Changing Environment, Proc. IAHS, 356, 319–326, 2012.
Fujita, M., Yamanoi, K., and Izumiyama, H.: A combined model of sediment production, supply and transport, Proc. IAHS, 367, 357–365, https://doi.org/10.5194/piahs-367-357-2015, 2015.
Golosov, V. and Walling, D. E.: Using fallout radionuclides to investigate recent overbank sedimentation rates on river floodplains: an overview, Proc. IAHS, 367, 228–234, https://doi.org/10.5194/piahs-367-228-2015, 2015.
Golovlyov, P., Kornilova, E., Krylenko, I., Belikov, V., Zavadskii, A., Fingert, E., Borisova, N., and Morozova, E.: Numerical modeling and forecast of channel changes on the river Lena near city Yakutsk, Proc. IAHS, 381, 65–71, https://doi.org/10.5194/piahs-381-65-2019, 2019.
Hinderer, M.: From gullies to mountain belts: A review of sediment budgets at various scales, Sediment. Geol., 280, 21–59, https://doi.org/10.1016/j.sedgeo.2012.03.009, 2012
Horowitz, A. J.: Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes, Sci. Total Environ., 400, 315–343, https://doi.org/10.1016/j.scitotenv.2008.04.022, 2008.
Horowitz, A. J. and Elrick, K. A.: The use of bed sediments in water quality studies and monitoring programs, Proc. IAHS, 375, 11–17, https://doi.org/10.5194/piahs-375-11-2017, 2017.
Jordan, P.: Sediment yields and water quality effects of severe wildfires in southern British Columbia, in: Wildfire and Water Quality: Processes, Impacts and Challenges, Proc. IAHS, 354, 25–35, 2012.
Kuhnle, R., Wren, D., and Langendoen, E.: Erosion depth of sand from an immobile gravel bed, Proc. IAHS, 367, 117–121, https://doi.org/10.5194/piahs-367-117-2015, 2015.
Laceby, J. P., Batista, P. V. G., Taube, N., Kruk, M. K., Chung, C., Evrard, O., Orwin, J. F., and Kerr, J. G.: Tracing total and dissolved material in a western Canadian basin using quality control samples to guide the selection of fingerprinting parameters for modelling, Catena, 200, 105095, https://doi.org/10.1016/j.catena.2020.105095, 2021.
Li, Y., Gholami, H., Song, Y., Fathabadi, A., Malakooti, H., and Collins, A.L.: Source fingerprinting loess deposits in Central Asia using elemental geochemistry with Bayesian and GLUE models, Catena, 194, 104808, https://doi.org/10.1016/j.catena.2020.104808, 2020.
Martinez-Carreras, N., Gallart, F., Iffly, J., Pfister, L., Walling, D., and Krein, A.: Uncertainty assessment in suspended sediment fingerprinting based on tracer mixing models: a case study from Luxembourg, in: Sediment Dynamics in Changing Environments, Proc. IAHS, 325, 94–105, 2008.
Matthews, S. and Neave, M. N.: Modelling hillslope soil erosion at ANZAC Cove, Turkey, in: Sediment Dynamics in Changing Environments, Proc. IAHS, 325, 616–619, 2008.
Minella, J. P. G., Merten, G. H., Walling, D. E., and Moro, M.: Using 137Cs measurements and sediment yield monitoring to document catchment scale sediment dynamics and budgets, in: Erosion and Sediment Yields in the Changing Environment, Proc. IAHS, 356, 338–344, 2012.
Moretto, J., Rigon, E., Mao, L., Deali, F., Picco, L., and Lenzi, M. A.: Using a terrestrial laser scanner to assess the morphological dynamics of a gravel-bed river, in: Erosion and Sediment Yields in the Changing Environment, Proc. IAHS, 356, 428–437, 2012.
Nosrati, K., Akbari-Mahdiabad, M., Fiener, P., and Collins, A. L.: Using different size fractions to source fingerprint fine-grained channel bed sediment in a large drainage basin in Iran, Catena, 200, 105173, https://doi.org/10.1016/j.catena.2021.105173, 2021a.
Nosrati, K., Akbari-Mahdiabad, M., Ayoubi, S., and Collins, A. L.: An exploratory study on the use of different composite magnetic and colour fingerprints in aeolian sediment provenance fingerprinting, Catena, 200, 105182, https://doi.org/10.1016/j.catena.2021.105182, 2021b.
Porto, P., Walling, D. E., and Callegari, G.: Validating the use of caesium-137 measurements to estimate erosion rates in three small catchments in Southern Italy, IAHS Publ., 288, 75–83, 2004.
Porto, P., Walling, D. E., and Callegari, G.: Investigating the effects of afforestation on soil erosion and sediment mobilisation in two small catchments in Southern Italy, Catena, 79, 181–188, https://doi.org/10.1016/j.catena.2009.01.007, 2009.
Porto, P., Walling, D. E., and Callegari, G.: Using 137Cs and 210Pbex measurements to investigate the sediment budget of a small forested catchment in Southern Italy, Hydrol. Process., 27, 795–806, https://doi.org/10.1002/hyp.9471, 2013.
Porto, P., Walling, D. E., La Spada, C., and Mallimo, N.: Combining caesium-137 measurements and suspended sediment load data to investigate the sediment response of a small catchment in southern Italy, Proc. IAHS, 367, 220–227, https://doi.org/10.5194/piahs-367-220-2015, 2015.
Ramon, R., Evrard, O., Laceby, J. P., Caner L., Inda, A. V., de Barros, C. A. P., Minella, J. P. G., and Tiecher, T.: Combining spectroscopy and magnetism with geochemical tracers to improve the discrimination of sediment sources in a homogeneous subtropical catchment, Catena, 195, 104800, https://doi.org/10.1016/j.catena.2020.104800, 2020.
Rickenmann, D., Antoniazza, G., Wyss, C. R., Fritschi, B., and Boss, S.: Bedload transport monitoring with acoustic sensors in the Swiss Albula mountain river, Proc. IAHS, 375, 5–10, https://doi.org/10.5194/piahs-375-5-2017, 2017.
Shi, Z., Blake, W. H., Wen, A., Chen, J., Yan, D., and Long, Y.: Channel erosion dominates sediment sources in an agricultural catchment in the upper Yangtze basin of China: evidence from geochemical fingerprints, Catena, 199, 105111, https://doi.org/10.1016/j.catena.2020.105111, 2021.
Southwell, M. and Thoms, M.: Double trouble: the influence of wildfire and flow regulation on fine sediment accumulation in the Cottee River, Australia, Proc. IAHS, 354, 90–98, 2012.
Tsyplenkov, A., Vanmaercke, M., Collins, A. L., Kharchenko, S., and Golosov, V.: Elucidating suspended sediment dynamics in a glacierized catchment after an exceptional erosion event: the Djankuat catchment, Caucasus Mountains, Russia, Catena, 203, 105285, https://doi.org/10.1016/j.catena.2021.105285, 2021.
Verstraeten, G., Lang, A., and Houben, P.: Human impact on sediment dynamics – quantification and timing, Catena, 77, 77-80, https://doi.org/10.1016/j.catena.2009.01.005, 2009.
Walling, D. E.: Tracing versus monitoring: New challenges and opportunities in erosion and sediment delivery research, in: Soil Erosion and Sediment Redistribution in River Catchments, edited by: Owens, P. N. and Collins, A. J., CABI, Wallingford, 13–27, https://doi.org/10.1079/9780851990507.0013, 2006.
Walling, D. E. and Webb, B. W.: Erosion and sediment yield: a global overview, in: Erosion and Sediment Yield: Global and Regional Perspectives, Proceedings of the Exeter Symposium, July 1996, Exeter, UK, IAHS Publ. no. 236, ISBN 0-947571-89-2, 1996.
Walling, D. E. and Zhang, Y.: Predicting slope-channel connectivity: a national-scale approach, IAHS Publ., 288, 107–114, 2004.
Walling, D. E., Woodward, J. C., and Nicholas, A. P.: A multi-parameter approach to fingerprinting suspended sediment sources, in: Tracers in hydrology, edited by: Peters, N. E., Hoehn, E., Leibundgut, C., Tase, N., and Walling, D. E., IAHS Publication No. 215, IAHS, Wallingford, 329–338, ISBN 0-947571-68-X, 1993.
Zhang, X., Tang, Q., Long, Y., He, X., and Wen, A.: Recent changes of suspended sediment yields in the Upper Yangtze River and its headwater tributaries, Proc. IAHS, 367, 297–303, https://doi.org/10.5194/piahs-367-297-2015, 2015.
Zhang, X. C., Liu, W. Z., Li, Z., and Zheng, F. L.: Simulating site-specific impacts of climate change on soil erosion and surface hydrology in southern Loess Plateau of China, Catena, 79, 237–242, https://doi.org/10.1016/j.catena.2009.01.006, 2009.