Articles | Volume 371
https://doi.org/10.5194/piahs-371-43-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-371-43-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Accounting for hydro-climatic and water use variability in the assessment of past and future water balance at the basin scale
J. Fabre
CORRESPONDING AUTHOR
CNRS, HydroSciences Laboratory, Place Eugene Bataillon, 34095 Montpellier, France
D. Ruelland
CNRS, HydroSciences Laboratory, Place Eugene Bataillon, 34095 Montpellier, France
A. Dezetter
IRD, HydroSciences Laboratory, Place Eugene Bataillon, 34095 Montpellier, France
B. Grouillet
CNRS, HydroSciences Laboratory, Place Eugene Bataillon, 34095 Montpellier, France
Related authors
J. Fabre, D. Ruelland, A. Dezetter, and B. Grouillet
Hydrol. Earth Syst. Sci., 19, 1263–1285, https://doi.org/10.5194/hess-19-1263-2015, https://doi.org/10.5194/hess-19-1263-2015, 2015
Short summary
Short summary
Socioeconomic and hydro-climatic data were used to model water resources, water demand and their interactions in two river basins. By using an integrative framework we successfully modeled variations in water stress over the past 40 years, accounting for climate and human pressures and changes in water management strategies over time. We explained past changes in discharge by separating human and hydro-climatic trends. This work will help assess future water stress and design adaptation plans.
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
EGUsphere, https://doi.org/10.5194/egusphere-2024-2370, https://doi.org/10.5194/egusphere-2024-2370, 2024
Short summary
Short summary
This study estimated the water balance of Lake Titicaca using an integrated modeling framework that considers natural hydrological processes and net irrigation consumption. The proposed approach was implemented at a daily scale for a period of 35 years. This framework is able to simulate lake water levels with good accuracy over a wide range of hydroclimatic conditions. The findings demonstrate that a simple representation of hydrological processes is suitable for use in poorly-gauged regions.
Ansoumana Bodian, Papa Malick Ndiaye, Serigne Bassirou Diop, Lamine Diop, Alain Dezetter, Andrew Ogilvie, and Koffi Djaman
Proc. IAHS, 385, 415–421, https://doi.org/10.5194/piahs-385-415-2024, https://doi.org/10.5194/piahs-385-415-2024, 2024
Short summary
Short summary
Reference evapotranspiration (ET0) is an essential parameter for hydrological modeling, irrigation planning and for studying the impacts of climate change on water resources. This work evaluate 20 alternative methods of estimating ET0 in order to adapt them to the climatic context of the 3 mains basins of Senegal where very little climate data is available. The methods of Valiantzas 1, Doorenboss & Pruitt and Penman are the most robust for the estimation of ET0 in this context.
Papa Malick Ndiaye, Ansoumana Bodian, Serigne Bassirou Diop, Lamine Diop, Alain Dezetter, Andrew Ogilvie, and Koffi Djaman
Proc. IAHS, 385, 305–311, https://doi.org/10.5194/piahs-385-305-2024, https://doi.org/10.5194/piahs-385-305-2024, 2024
Short summary
Short summary
The analyze of the trends of ET0 at the scale of the Senegal, Gambia and Casamance river basins using reanalyze data of NASA/POWER over 1984–2019 shows that ET0 increases significantly in 32% of the Senegal basin and decreases in less than 1% of it. In the Casamance and Gambia basins, the annual ET0 drops by 65% and 18%, respectively. Temperature and relative humidity show an increasing trend over all basins while wind speed and radiation decrease, confirming the so-called "evaporation paradox".
Yves Tramblay, Nathalie Rouché, Jean-Emmanuel Paturel, Gil Mahé, Jean-François Boyer, Ernest Amoussou, Ansoumana Bodian, Honoré Dacosta, Hamouda Dakhlaoui, Alain Dezetter, Denis Hughes, Lahoucine Hanich, Christophe Peugeot, Raphael Tshimanga, and Patrick Lachassagne
Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, https://doi.org/10.5194/essd-13-1547-2021, 2021
Short summary
Short summary
This dataset provides a set of hydrometric indices for about 1500 stations across Africa with daily discharge data. These indices represent mean flow characteristics and extremes (low flows and floods), allowing us to study the long-term evolution of hydrology in Africa and support the modeling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.
Denis Ruelland
Hydrol. Earth Syst. Sci., 24, 2609–2632, https://doi.org/10.5194/hess-24-2609-2020, https://doi.org/10.5194/hess-24-2609-2020, 2020
Short summary
Short summary
Interpolation methods accounting for elevation dependency from scattered gauges result in inaccurate inputs for snow-hydrological models. Altitudinal gradients of temperature and precipitation can be successfully inferred using an inverse snow-hydrological modelling approach. This approach can significantly improve the simulation of snow cover and streamflow dynamics through more parsimonious parametrization.
Frédéric Satgé, Denis Ruelland, Marie-Paule Bonnet, Jorge Molina, and Ramiro Pillco
Hydrol. Earth Syst. Sci., 23, 595–619, https://doi.org/10.5194/hess-23-595-2019, https://doi.org/10.5194/hess-23-595-2019, 2019
Short summary
Short summary
This paper assesses the potential of satellite precipitation estimates (SPEs) for precipitation measurement and hydrological and snow modelling. A total of 12 SPEs is considered to provide a global overview of available SPE accuracy for users interested in such datasets. Results show that, over poorly monitored regions, SPEs represent a very efficient alternative to traditional precipitation gauges to follow precipitation in time and space and for hydrological and snow modelling.
Paul Hublart, Denis Ruelland, Inaki García de Cortázar-Atauri, Simon Gascoin, Stef Lhermitte, and Antonio Ibacache
Hydrol. Earth Syst. Sci., 20, 3691–3717, https://doi.org/10.5194/hess-20-3691-2016, https://doi.org/10.5194/hess-20-3691-2016, 2016
Short summary
Short summary
Our paper explores the reliability of conceptual catchment models in the dry Andes. First, we show that explicitly accounting for irrigation water use improves streamflow predictions during dry years. Second, we show that sublimation losses can be easily incorporated into temperature-based melt models without increasing model complexity too much. Our work also highlights areas requiring additional research, including the need for a better conceptualization of runoff generation processes.
Benjamin Grouillet, Denis Ruelland, Pradeebane Vaittinada Ayar, and Mathieu Vrac
Hydrol. Earth Syst. Sci., 20, 1031–1047, https://doi.org/10.5194/hess-20-1031-2016, https://doi.org/10.5194/hess-20-1031-2016, 2016
Short summary
Short summary
This original paper provides a guideline to select statistical downscaling methods (SDMs) in climate change impact studies (CCIS) to minimize uncertainty from downscaling. Three SDMs were applied to NCEP reanalysis and 2 GCM data values. We then analyzed the sensitivity of the hydrological model to the various downscaled data via 5 hydrological indicators representing the main features of the hydrograph. Our results enable selection of the appropriate SDMs to be used to build climate scenarios.
D. Ruelland, P. Hublart, and Y. Tramblay
Proc. IAHS, 371, 75–81, https://doi.org/10.5194/piahs-371-75-2015, https://doi.org/10.5194/piahs-371-75-2015, 2015
Short summary
Short summary
This study explores various hydrological projections while accounting for propagation uncertainties that arise from the methods used to generate climate projections and to simulate streamflow responses from four basins in the Mediterranean. Hydrological projections based on temperature ensemble scenarios generally agree on a runoff decrease during all seasons while projections mixing temperature and precipitation ensemble scenarios only agreed on a trend to runoff decrease during spring.
P. Hublart, D. Ruelland, I. García De Cortázar Atauri, and A. Ibacache
Proc. IAHS, 371, 203–209, https://doi.org/10.5194/piahs-371-203-2015, https://doi.org/10.5194/piahs-371-203-2015, 2015
Short summary
Short summary
This paper explores the reliability of low-flow simulations by conceptual models in a semi-arid, Andean catchment facing climate variability and water-use changes. A parsimonious hydrological model (GR4J) was combined with a model of irrigation water-use (IWU) to provide a new model of the catchment behavior (called GR4J/IWU). The original GR4J model and the GR6J model were also used as benchmarks to evaluate the usefulness explicitly accounting for water abstractions.
F. Raynaud, V. Borrell-Estupina, S. Pistre, S. Van-Exter, N. Bourgeois, A. Dezetter, and E. Servat
Proc. IAHS, 369, 55–60, https://doi.org/10.5194/piahs-369-55-2015, https://doi.org/10.5194/piahs-369-55-2015, 2015
Short summary
Short summary
During a flood event over a karst watershed, the karst may attenuate surface floods by absorbing water or contribute to the surface flood by direct contribution of karst waters in the rivers and by diffuse resurgence along the hillslopes. If it is possible to monitor each known outlet of a karst system, the diffuse contribution is yet difficult to assess. We present here a new, original method to do it, based on chemical analysis and a hydraulic study.
P. Hublart, D. Ruelland, A. Dezetter, and H. Jourde
Hydrol. Earth Syst. Sci., 19, 2295–2314, https://doi.org/10.5194/hess-19-2295-2015, https://doi.org/10.5194/hess-19-2295-2015, 2015
Short summary
Short summary
This study aimed at reducing structural uncertainty in the conceptual modelling of a semi-arid Andean catchment. A multiple-hypothesis framework was combined with a multi-criteria assessment scheme to characterize both model non-uniqueness and model inadequacy. This led to retaining eight model structures as a representation of the minimum structural uncertainty that could be obtained with this modelling framework.
J. Fabre, D. Ruelland, A. Dezetter, and B. Grouillet
Hydrol. Earth Syst. Sci., 19, 1263–1285, https://doi.org/10.5194/hess-19-1263-2015, https://doi.org/10.5194/hess-19-1263-2015, 2015
Short summary
Short summary
Socioeconomic and hydro-climatic data were used to model water resources, water demand and their interactions in two river basins. By using an integrative framework we successfully modeled variations in water stress over the past 40 years, accounting for climate and human pressures and changes in water management strategies over time. We explained past changes in discharge by separating human and hydro-climatic trends. This work will help assess future water stress and design adaptation plans.
Cited articles
Collet, L., Ruelland, D., Borrell-Estupina, V., Dezetter, A., and Servat, E.: Integrated modeling to assess long-term water supply capacity of a meso-scale Mediterranean catchment, Sci. Total Environ., 461–462, 528–540, 2013.
Dezetter, A., Fabre, J., Ruelland, D., and Servat, E.: Selecting an optimal climatic dataset for integrated modeling of the Ebro hydrosystem, in: Hydrology in a changing world: environmental and human dimensions (Proc. 7th FRIEND Int. Conf., Montpellier, France, 7–10 October 2014), 363, 355–360, IAHS Publ., 2014.
Fabre, J., Ruelland, D., Dezetter, A., and Grouillet, B.: Simulating past changes in the balance between water demand and availability and assessing their main drivers at the river basin scale, Hydrol. Earth Syst. Sci., 19, 1236–1285, https://doi.org/10.5194/hess-19-1263-2015, 2015.
Grouillet, B., Fabre, J., Ruelland, D., and Dezetter, A.: Historical reconstruction and 2050 projections of water demand under anthropogenic and climate changes in two contrasted Mediterranean catchments, J. Hydrol, 522, 684–696, 2015.
Heinrichs, T., Lehner, B., and Alcamo, J.: An Integrated Analysis of Change in Water Stress in Europe, Int. Assess., 3, 15–29, 2012.
Montanari, A., Young, G., Savenije, H., Hughes, D., Wagener, T., Ren, L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivalapan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S., Baldassarre, G. D., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: Panta Rhei – Evrything Flows': Change in hydrology and society – The IAHS Scientific Decade 2013–2022, Hydrol. Sci. J., 58, 1256–1275, 2014.
Perrin, C., Michel, C., and Andreassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 10, 282–290, 2003.
Ruelland, D., Ardoin-Bardin, S., Collet, L., and Roucou, P.: Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change, J. Hydrol., 424–425, 207–216, 2012.
Short summary
Socio-economic and hydroclimatic data were integrated in a modeling framework to simulate water resources and demand. We successfully modeled water stress changes in space and time in two basins over the past 40 years, and explained changes in discharge by separating human and hydroclimatic trends. The framework was then applied under 4 combinations of climate and water use scenarios at the 2050 horizon. Results showed that projected water uses are not sustainable under climate change scenarios.
Socio-economic and hydroclimatic data were integrated in a modeling framework to simulate water...