Articles | Volume 387
https://doi.org/10.5194/piahs-387-17-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.A hybrid approach to enhance streamflow simulation in data-constrained Himalayan basins: combining the Glacio-hydrological Degree-day Model and recurrent neural networks
Related authors
Cited articles
Barry, R. G.: Recent advances in mountain climate research, Theor. Appl. Climatol., 110, 549–553, https://doi.org/10.1007/s00704-012-0695-x, 2012.
Bengio, Y., Simard, P., and Frasconi, P.: Learning Long-Term Dependencies with Gradient Descent is Difficult, IEEE Trans. Neural Netw., 5, 157–166, https://doi.org/10.1109/72.279181, 1994.
Beven, K.: Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Process., 16, 189–206, https://doi.org/10.1002/HYP.343, 2002.
Bocchiola, D., Diolaiuti, G., Soncini, A., Mihalcea, C., D'Agata, C., Mayer, C., Lambrecht, A., Rosso, R., and Smiraglia, C.: Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan, Hydrol. Earth Syst. Sci., 15, 2059–2075, https://doi.org/10.5194/hess-15-2059-2011, 2011.
Carrera, J., Alcolea, A., Medina, A. V., Hidalgo, J. J., and Slooten, L. J.: Inverse problem in hydrogeology, Hydrogeol. J., 13, 206–222, https://doi.org/10.1007/s10040-020-02176-0, 2005.