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Abstract. The Glacio-hydrological Degree-day Model (GDM) is a distributed model, but it is prone to uncer-
tainties due to its conceptual nature, parameter estimation, and limited data in the Himalayan basins. To enhance
accuracy without sacrificing interpretability, we propose a hybrid model approach that combines GDM with
recurrent neural networks (RNNs), hereafter referred to as GDM–RNN. Three RNN types – a simple RNN
model, a gated recurrent unit (GRU) model, and a long short-term memory (LSTM) model – are integrated with
GDM. Rather than directly predicting streamflow, RNNs forecast GDM’s residual errors. We assessed perfor-
mance across different data availability scenarios, with promising results. Under limited-data conditions (1 year
of data), GDM–RNN models (GDM–simple RNN, GDM–LSTM, and GDM–GRU) outperformed standalone
GDM and machine learning models. Compared with GDM’s respective Nash–Sutcliffe efficiency (NSE), R2,
and percent bias (PBIAS) values of 0.80, 0.63, and −4.78, the corresponding values for the GDM–simple RNN
were 0.85, 0.82, and −6.21; for GDM–LSTM, they were 0.86, 0.79, and −6.37; and for GDM–GRU, they were
0.85, 0.8, and −5.64. Machine learning models yielded similar results, with the simple RNN at 0.81, 0.7, and
−16.6; LSTM at 0.79, 0.65, and −21.42; and GRU at 0.82, 0.75, and −12.29, respectively. Our study highlights
the potential of machine learning with respect to enhancing streamflow predictions in data-scarce Himalayan
basins while preserving physical streamflow mechanisms.

1 Introduction

Hydrological models, classified as spatially distributed or
lumped, differ in complexity and scope. While spatially dis-
tributed models cover diverse parameters across an area,
lumped models use simpler relationships with fewer vari-
ables (Refsgaard and Knudsen, 1996). Physically based mod-
els aim for accuracy but may struggle with fine-scale fea-
tures, often operating at larger scales with indirect parameter
estimation (Beven, 2002). Despite their grounding in physi-
cal principles, they may not precisely represent all hydrolog-
ical processes (Beven, 2002).

In high-mountain regions, like the Himalayas, distributed
rainfall–runoff models face challenges due to the inade-
quate representation of snow and glacial processes. Glacio-
hydrological models are crucial, but their effectiveness relies
on data accessibility, with results influenced by the spatial
and temporal resolutions (Réveillet et al., 2018). Despite the
notion that increased data accessibility simplifies model con-
struction, it often reveals the intricate nature of hydrological
systems across diverse temporal and spatial scales (De Filip-
pis et al., 2020).

Addressing inverse problems for calibrated hydrological
models faces challenges like nonuniqueness and computa-

Published by Copernicus Publications on behalf of the International Association of Hydrological Sciences.



18 D. Joshi et al.: A hybrid approach to enhance streamflow simulation in data-constrained Himalayan basins

tional demands (Carrera et al., 2005). Uncertainties in hydro-
logical models arise from observation accuracy, model vari-
ations, parameter distributions, estimation, and forcing vari-
ables (Dahlstrom, 2015).

Machine learning algorithms aid parameter estimation,
especially with abundant data (Solomatine, 2006). While
physically derived models persist for comprehensive insights
(Nearing et al., 2020), machine learning models comple-
ment them by addressing unpredictability or uncertainty
(Solomatine, 2006). However, machine learning models lack
interpretability as black-box models and may struggle in
data-scarce regions like the Himalayan basin (Kayastha and
Kayastha, 2019; Jia et al., 2020).

Debates on river discharge modeling focus on understand-
ing physical processes vs. replicating observed values (Ji
et al., 2021). An emerging solution combines both meth-
ods, using theory-based elements alongside data science to
model residual errors. This approach constructs a residual
error model to represent the theory-based model’s discrep-
ancies.

This research investigates the efficacy of recurrent neu-
ral networks (RNNs) with respect to modeling hydrologi-
cal residual errors for improved streamflow predictions in
data-constrained Himalayan basins. Specifically, the perfor-
mance of different RNNs – simple RNN, a gated recurrent
unit (GRU) model, and a long short-term memory (LSTM)
model – is compared in contrast to a previous study’s fo-
cus on LSTM alone (Cho and Kim, 2022). Simulations us-
ing the Glacio-hydrological Degree-day Model (GDM), sim-
ple RNN, GRU, and LSTM individually are also compared
with proposed models (GDM–simple RNN, GDM–GRU,
and GDM–LSTM).

2 Material and methods

2.1 Study area

The study area, Marsyangdi River basin in the Nepal
Himalayas (Fig. 1), spans 4059 km2, ranging from 355
to 7819 m a.s.l. (above sea level). About 13.3 % of the
area is glacier-covered terrain, mainly between 4000 and
6500 m a.s.l. The basin experiences the Indian summer mon-
soon (June–September) and occasional westerly disturbances
post-monsoon (October–January). Geographically, it fea-
tures diverse terrain, primarily on the southern slopes of the
Central Himalayas, influenced by the Annapurna Massif in
the northwest.

2.2 Glacio-hydrological Degree-day Model (GDM)

The Glacio-hydrological Degree-day Model (GDM, version
1.0) is a gridded hydrological model that evaluates the im-
pact of various hydrological elements on river discharge
(Kayastha and Kayastha, 2019). Operating daily, it incorpo-
rates snowmelt, glacier ice melt, rainfall, and baseflow runoff

components. GDM utilizes a degree-day method for glacier
ice melt and snowmelt, simplifying complex processes while
minimizing data requirements.

Covering a 3 × 3 km gridded area, GDM assigns Glo-
beLand30 land categories to each grid and employs daily
temperature and precipitation data from reference stations.
It determines rain or snow in grids based on a threshold tem-
perature. Daily ice melt and snowmelt in each grid consider
debris-free and debris-covered ice, alongside glacierized and
glacier-free regions.

The model computes surface runoff for each grid from pre-
cipitation, snowmelt, and ice melt. The cumulative surface
runoff and baseflow from all grids contribute to the total dis-
charge, directed to the outlet using a combined flow equation
involving recession coefficients.

2.3 Recurrent neural networks (RNNs)

Recurrent neural networks (RNNs) are capable of capturing
nonlinear connections in sequential data. They process in-
put sequences element by element, utilizing a hidden state
to retain information about past inputs, allowing predictions
based on historical context. RNNs are suitable for regres-
sion problems, predicting continuous outputs from input se-
quences. Training involves employing regression loss func-
tions like mean-squared error or mean absolute error (Heaton
et al., 2018).

RNN components include an input layer, recurrent unit,
hidden state, activation function, output layer, loss function,
and optimization algorithm. Hyperparameters in RNNs con-
trol network behavior, impacting the capacity, convergence
speed, overfitting, sequence length, dropout, layers, activa-
tion function, optimization algorithm, learning rate decay,
and early stopping (Heaton et al., 2018). Types of RNNs
include the simple RNN, LSTM, and GRU models. Sim-
ple RNN models possess limited memory for short-term
sequences (Bengio et al., 1994). LSTM introduces mem-
ory cells and gates controlling data flow, enabling long-
term memory retention (Hochreiter and Schmidhuber, 1997).
GRU combines input and forget gates into an update gate,
requiring fewer parameters than LSTM, but offering similar
performance (Cho et al., 2014).

2.4 The GDM–RNN hybrid approach

The study introduces a GDM–RNN hybrid approach that
aims to improve streamflow prediction by integrating GDM’s
physical constraints. This approach utilizes RNNs (simple
RNN, GRU, and LSTM models) to forecast residual er-
rors between observed and GDM-simulated inflows based on
meteorological inputs. Given the complexity of quantifying
these errors, the assumption is made that they exhibit identi-
fiable patterns. The RNNs operate independently after GDM
simulation to optimize error prediction without disturbing the
physical constraints. Figure 2 outlines this hybrid process,
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Figure 1. Map of Marsyangdi River basin, highlighting the river, tributaries, Bimalnagar hydrological station, Khudi Bazar base station, and
meteorological stations. Publisher’s remark: please note that the above figure contains disputed territories.

Figure 2. Schematic diagram of the GDM–RNN hybrid process.

involving the generation of simulated streamflow data via
GDM, computation of residual errors, optimization, training
of RNN models using these errors and meteorological data,
projection of future errors, and application of these predic-
tions to enhance GDM simulations. This approach intends to
improve traditional GDM simulations by accounting for pre-
dictive discrepancies originating from various uncertainties.

2.5 Input data

Daily air temperature, rainfall, and river flow data are ob-
tained from the Department of Hydrology and Meteorology
(DHM). Temperature and rainfall data from Khudi Bazar and
Chame stations are used for the GDM, while Bimalnagar out-
let station’s discharge data validated the study. RNNs were
trained using the climatic stations’ temperature, rainfall data,
and discharge data from Bimalnagar. The GDM relied on el-
evation information from ASTER Global Digital Elevation
Model Version 2 and land cover data from the GlobeLand30
dataset. Six land classes were identified and modified for uni-
form rainfall–runoff factors. Glacier identification was based
on the International Centre for Integrated Mountain Develop-
ment (ICIMOD) glacier inventory of shapefiles from 2010.
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Figure 3. Observed vs. simulated discharges: the GDM model in the Marsyangdi River basin (1-year calibration and 3-year validation).

Figure 4. Observed vs. simulated discharges: different RNN models in the Marsyangdi River basin (1-year calibration and 3-year validation).

2.6 Experimental designs

The study employed seven models: GDM, GDM–LSTM,
LSTM, GDM–GRU, GRU, GDM–simple RNN, and simple
RNN. Each GDM model variant combined with RNNs aimed
to predict residual errors. RNNs were used for river discharge
simulation and performance comparisons with GDM models
and GDM–RNN hybrids. Two datasets were used for cali-
bration/training: a 1-year dataset and a 3-year dataset. GDM
and RNNs were calibrated/trained using 2005 data and vali-
dated with 2008–2010 data. The GDM coupled with RNNs
utilized 2005 data for calibration, predicting residual errors
(2008–2010). Similarly, the experiment was repeated using
data from 2005 to 2007 for calibration and training purposes.
The models were then validated using 2008–2010 data. Dis-
charge simulations by GDM (2008–2010) were corrected us-
ing predicted residual errors from RNNs, and the results were
validated using observed discharge data (2008–2010).

The streamflow forecasts of various models were assessed
utilizing three widely utilized measures for hydrological
model evaluation: percent bias (PBIAS), Nash–Sutcliffe effi-
ciency (NSE), and R2 (Moriasi et al., 2015).

3 Results and discussions

In the Glacio-hydrological Degree-day Model (GDM) cali-
bration, adjustments are made in positive degree-day factors,
snow and rain coefficients, and the recession coefficient. Pa-
rameters are calibrated for 1-year and 3-year periods using
observed streamflow data from the Marsyangdi River basin.
The model closely replicated observed data for both peri-
ods, with slightly better performance in the 3-year calibration
(Fig. 3). Although the model generally matched observed
outflow, it tended to overestimate during low-flow periods
due to challenges with respect to accurately depicting precip-
itation distribution, especially at higher altitudes (Immerzeel
et al., 2015; Bocchiola et al., 2011; Barry, 2012). Evaluation
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Figure 5. Observed vs. simulated discharges: different GDM–RNN models in the Marsyangdi River basin (1-year calibration and 3-year
validation).

Figure 6. Observed vs. simulated discharges: the GDM model in the Marsyangdi River basin (3-year calibration and 3-year validation).

Table 1. The NSE, R2, and PBIAS metrics during the GDM model
calibration and validation periods.

Evaluation One-year calibration Three-year calibration
metric period period

Calibration Validation Calibration Validation

NSE 0.80 0.80 0.82 0.81
R2 0.68 0.63 0.74 0.7
PBIAS 7.2 −4.78 10.38 −1.27

metrics (NSE, R2, and PBIAS) indicated a satisfactory fit but
showed some bias, with the model overestimating in the cal-
ibration and underestimating in the validation (Table 1).

In this study, RNN models (simple RNN, LSTM, and
GRU) are trained using 1-year and 3-year datasets, employ-
ing diverse training parameters including network architec-

Table 2. The NSE, R2, and PBIAS metrics for different RNNs used
in the RNN-only approach.

Evaluation One year of data Three years of data
metric used for training used for training

Training Validation Training Validation
period period period period

Simple NSE 0.83 0.81 0.86 0.85
RNN R2 0.86 0.7 0.87 0.78

PBIAS 10.72 −16.6 12 −8.08

LSTM NSE 0.88 0.79 0.85 0.85
R2 0.88 0.65 0.88 0.82
PBIAS 2.82 −21.42 16.99 −7.84

GRU NSE 0.87 0.82 0.93 0.87
R2 0.88 0.75 0.93 0.8
PBIAS 9.89 −12.29 9.76 −11.85

https://doi.org/10.5194/piahs-387-17-2024 Proc. IAHS, 387, 17–24, 2024



22 D. Joshi et al.: A hybrid approach to enhance streamflow simulation in data-constrained Himalayan basins

Figure 7. Observed vs. simulated discharges: different RNN models in the Marsyangdi River basin (3-year calibration and 3-year validation).

ture, activation functions, optimization algorithms, loss func-
tions, and training schedules. Models preprocessed input data
through normalization and utilized Adam optimization with a
mean absolute error loss function. The number of hidden lay-
ers and neurons varied among models; all had 4 input units
and 1 output unit, with GRU and LSTM using 128 neurons in
a hidden layer, while simple RNN employed 32. The learn-
ing rate is constant at 0.01 but had varied schedules. In this
study, the parameters of the RNN models are selected using
the grid search technique.

Analysis shows superior performance for RNNs with 3
years of data compared with those with 1 year of data.
LSTM and GRU exhibited better simulation of river dis-
charge patterns than simple RNN models, especially with
extensive training data, indicating a greater capacity to
learn past streamflow behaviors. However, smaller datasets
yielded only satisfactory results, suggesting the suitability of
process-based models like GDM. Evaluation metrics demon-
strated GRU’s superior performance across NSE, R2, and
PBIAS for both 1-year and 3-year validation periods, while
LSTM excelled slightly with respect to the R2 value for the
3-year period. Simple RNN consistently showed the poorest
performance (Table 2).

Positive PBIAS during training suggests model overes-
timation, potentially due to overfitting, whereas negative
PBIAS during validation implies underestimation, indicating
an inability to capture relevant data aspects. Despite better
performance on training data, the emphasis lies on a model’s
ability to generalize to new data, highlighting the signifi-
cance of validation results. Overall, GRU showcased superior
performance in key metrics across different training periods,
with LSTM showing competitive results in specific aspects.

Hybrid modeling combined GDM and three RNN variants
(simple RNN, LSTM, and GRU) to predict GDM residual
errors. The hybrid approach split into simulating streamflow
using GDM parameters and training RNNs to predict errors

Table 3. The NSE, R2, and PBIAS metrics for different GDM–
RNN models.

Evaluation One year of data Three years of data
metric used for training used for training

Training Validation Training Validation
period period period period

GDM– NSE 0.86 0.85 0.93 0.85
Simple R2 0.88 0.82 0.93 0.78
RNN PBIAS 6.49 −6.21 6.16 −7.42

GDM– NSE 0.88 0.86 0.9 0.88
LSTM R2 0.86 0.79 0.91 0.85

PBIAS 6.96 −6.37 10.87 −2.22

GDM– NSE 0.87 0.85 0.85 0.85
GRU R2 0.87 0.8 0.86 0.8

PBIAS 10.4 −5.64 20.01 −0.04

(Table 3). All RNNs featured a single hidden layer with 64–
254 neurons, tanh activation in the hidden layer, and linear
activation in the output layer, using Glorot uniform kernel
initialization. Input data normalization is applied. Key hyper-
parameters varied, including dropout rates (0.2–0.6), Adam
optimization, batch size equivalent to the entire training set,
a sequence length of 365 d, and a fixed learning rate of 0.01.
Learning rate schedules varied or were absent, employing
strategies like exponential or inverse time-based decay. The
grid search technique is used to select the best-performing
parameters.

The integration of GDM and RNN models (GDM–RNN)
outperforms the sole use of RNNs for streamflow prediction.
GDM–RNN provides more stable predictions, using resid-
ual discrepancies as objectives, while RNNs directly predict
streamflow. This disparity in objectives impacts the model
forecasts, potentially causing greater systematic discrepan-
cies in RNNs due to streamflow variability.
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Figure 8. Observed vs. simulated discharges: different GDM–RNN models in the Marsyangdi River basin (3-year calibration)

GDM–RNN (Figs. 4–8) simulation aligns better with
physical discharge patterns, addressing issues like negative
discharge seen in simple RNN (Fig. 4). It particularly excels
with 1 year of observed discharge data, significantly improv-
ing simulations compared with RNNs with the same train-
ing data. GDM–RNN enhances GDM’s streamflow predic-
tion by reducing uncertainties and effectively resolves high-
discharge issues in the pre-monsoon season. During the mon-
soon, GDM–RNN (Fig. 8) closely matches observed dis-
charge compared to GDM (Fig. 6) simulations.

4 Conclusions

Our study highlights the effectiveness of utilizing LSTM,
GRU, and simple RNN machine learning techniques to im-
prove streamflow forecasting within the GDM model in the
Marsyangdi River basin, Nepal. The amalgamation of GDM
and RNNs significantly enhances predictive accuracy, no-
tably in terms of the NSE and coefficient of determination,
while displaying comparable performance in PBIAS to GDM
alone. The limitations of RNNs, particularly with respect to
handling high-variability datasets, contribute to disparities in
PBIAS measures compared with GDM. Furthermore, while
GDM shows consistent performance across varying calibra-
tion dataset sizes, RNNs benefit significantly from increased
training data. Notably, the GDM–RNN model displays su-
perior adaptability with limited calibration and training data,
showing notable improvements with increased dataset sizes.
GRU and LSTM outperform simple RNN due to their ca-
pacity to handle long-term dependencies, both in standalone
RNN usage and in hybrid combinations.

Evaluation in a single basin with limited data showcases
the robustness of GDM–RNN and the potential of RNN im-
plementation. Expanding validation with 3 years of data or
across different basins would enhance its reliability. While
comparing two datasets demonstrated promising results, ex-

amining additional data could further strengthen our ap-
proach.
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