Articles | Volume 386
https://doi.org/10.5194/piahs-386-81-2024
https://doi.org/10.5194/piahs-386-81-2024
Post-conference publication
 | 
19 Apr 2024
Post-conference publication |  | 19 Apr 2024

Artificial neural networks applied for flood forecasting in ungauged basin – the Paranaíba river study case

Abderraman R. A. Brandão, Frederico C. M. de Menezes Filho, Paulo T. S. Oliveira, and Maria C. Fava

Related authors

Performance analysis of physically-based (HEC-RAS, CADDIES) and AI-based (LSTM) flood models for two case studies
Marina Batalini de Macedo, Nikunj K. Mangukiya, Maria Clara Fava, Ashutosh Sharma, Roberto Fray da Silva, Ankit Agarwal, Maria Tereza Razzolini, Eduardo Mario Mendiondo, Narendra K. Goel, Mathew Kurian, and Adelaide Cássia Nardocci
Proc. IAHS, 386, 41–46, https://doi.org/10.5194/piahs-386-41-2024,https://doi.org/10.5194/piahs-386-41-2024, 2024
Short summary
Hydrological trade-offs due to different land covers and land uses in the Brazilian Cerrado
Jamil A. A. Anache, Edson Wendland, Lívia M. P. Rosalem, Cristian Youlton, and Paulo T. S. Oliveira
Hydrol. Earth Syst. Sci., 23, 1263–1279, https://doi.org/10.5194/hess-23-1263-2019,https://doi.org/10.5194/hess-23-1263-2019, 2019
Short summary

Cited articles

Agência Nacional de Águas e Saneamento Básico (ANA): HIDROWEB v3.3.7413.0, ANA [data set], https://www.snirh.gov.br/hidroweb/serieshistoricas, last access: 10 February 2023. 
Amaral, E. A., Nascimento, A. R. T., Silva, C. R., Oliveira, A. P., and Silva, G. R.: Avaliação de impactos ambientais na APP do Rio Paranaíba e inferências para mitigação, Revista Ibero Americana de Ciências Ambientais, 12, 572–584, ISSN 2179-6858, 2021. 
Collischonn, W. and Dornelles, F.: Hidrologia para engenharia e ciências ambientais, Porto Alegre: Associação Brasileira de Recursos Hídricos, ISBN 978-85-8868-634-2, 2021. 
Bessa, K. C. F. O. and Soares, B. R.: Considerações Sobre A Dinâmica Demográfica Na Região Do Triângulo Mineiro/Alto Paranaíba, Caminhos de Geografia, Uberlândia, MG, 3, 22–45, https://doi.org/10.14393/RCG3615293, 2002. 
Cristaldo, M. F., Jesus, L., Oliveira, P. T., Souza, C. C., Viganó, H. H. G, and Padovi, C. R.: Redes Neurais Artificiais Aplicadas À Previsão De Enchentes Para Região Do Pantanal No Mato Grosso Do Sul, Geociências, 39, 191–201, https://doi.org/10.5016/geociencias.v39i1.13644, 2020. 
Download
Short summary
Flow simulation using artificial neural networks is widely used in modeling, particularly in data-scarce areas. Our study utilized MLP neural networks to predict urban runoff in flood-prone basin. Motivated by the vulnerability to floods, we input rainfall and previous runoff data. The model effectively captured basin dynamics, highlighting the impact of urbanization. This research supports urban river basin planning and aids in flood mitigation and adaptation strategies.