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Abstract. Flow simulation using artificial neural networks (ANNs) in the modelling has been widely applied
and has gained prominence in regions lacking data. The hydrological variables are subject to the influence of
morphological characteristics and urbanization in the watershed. Statistical models, such as ANNs, need to be
able to identify the relationship between the hydrological inputs and outputs of the model, without explicitly con-
sidering the other relationships involved in physical processes. This work aimed to apply a Multilayer Perceptron
(MLP) neural network for predicting flows in an urban basin subject to recurrent floods, using precipitation and
flow data from previous periods as inputs. After model calibration and validation for the current state of the basin
(2018–2019), its responses were analysed using input data before the basin urbanization (1985–1986) to iden-
tify the error behaviour at the output as a proxy for the basin changes effect. Its efficiency was evaluated using
hydrographs, showing satisfactory results in both periods. In the urbanization period, there is more dispersion
for maximum flows. For the day 4 steps back in the current forecast, NSE = 0.59 was observed, whereas in the
other period, NSE= 0.70. The evaluation of the models for the current period of basin urbanization showed that
the model could capture the basin’s physical dynamics within the established static relationship. Also, the result
found in the statistical relationships for the inputs showed once again the impact of urbanization on the basin.

1 Introduction

Hydrological modelling has proven to be a reliable solu-
tion for many problems. However, in traditional models, the
representation of hydrological processes translates into high
complexity, due to the large number of input parameters re-
quired for model setup. In parallel with the development of
traditional models that aim to represent the physical pro-
cesses involved in the hydrological cycle, since the 1950s,
scholars in the area have been developing data-driven models
for the description of complex hydrological processes with-
out the need for several input parameters, given the difficulty
in obtaining these data (Fatichi et al., 2016).

According to Kermani et al. (2020), given the computa-
tional efficiency and flexibility of applying machine learning,
this approach has been applied to solve several challenges in
the field of hydrological sciences and has great potential to
provide more accurate and reliable predictions when com-
pared to traditional statistical models, stochastic methods,
and empirical formulations.

Artificial Neural Networks (ANNs) are part of the set of
machine learning techniques based on artificial neurons. Cur-
rently, the ANN Multilayer Perceptron (MLP) architecture is
widely used. Its array is divided into input neurons, which
store the input vectors, and output vectors, which receive the
processing response. There is a hidden layer between the in-
put and output vectors, which may contain one or more divi-
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sions where data processing takes place, with the entire net-
work being connected (Dazzi et al., 2021).

Considering the multilayer perceptron application per-
spectives, the objective of this work was to evaluate the per-
formance of the artificial neural network to simulate average
daily flows in a basin in Minas Gerais State in Brazil with
input data under the effect of changes caused by the urban-
ization of the basin, evaluating its effectiveness according
to statistical criteria. The case study was chosen due to the
recurrence of Paranaíba river overflow in the rainy season,
causing damage to the municipality of Patos de Minas and its
population. Another factor to be highlighted is the evidence
of the importance of the river for the entire Alto Paranaíba
region since it supplies cities and local agricultural activities.
The forecast of flows in the basin is paramount for produc-
tive environmental zoning policies, the safety of the popula-
tion living in the neighbourhoods surrounding the floodplain
area. According to Nogueira (2017), the area is highly sus-
ceptible to floods, while Amaral (2021) describes that floods
periodically reach the urban perimeter.

2 Case Study and Problem Statement

The study was carried out in a sub-basin of the Paranaíba
River, one of the main tributaries of the Paraná River basin,
with the outlet defined at the fluviometric station (Code
6001100) located in the urban perimeter of Patos de Mi-
nas – MG. The drainage area of the basin is 3791.83 km2

(Fig. 1), corresponding to 11.02 % of the entire basin of the
Paranaíba River, with an extension of the main watercourse
of 106.6 km.

The predominant land use and occupation class is agricul-
ture and livestock, but there is also an urbanized area. The re-
gion has a low slope in the central region and is mountainous
at the extremes and the predominant soil class is Red Latosol,
according to Santos et al. (2018). The time of concentration
is about 12.93 h, calculated by the U.S. Army Corps of Engi-
neers equation (Collischown and Dornelles, 2021).

According to the Köppen-Geiger climate classification,
the type of climate present in the basin is mostly of the Aw
type, evidencing a tropical climate with temperatures above
18 °C, a dry season, and high annual precipitation.

3 Material and Methods

3.1 Data description and preparation of inputs

The precipitation series were corrected using the Simple Lin-
ear Regression method, data consistency was performed us-
ing the Double Mass method developed by the Geological
Survey (USA), and the average rainfall in the basin was cal-
culated using Thiessen Polygons, all as described by Col-
lischonn and Dornelles (2021).

The basin underwent intense urbanization from the 2000s
onwards (Bessa and Soares, 2002). Thus, the rainfall and

Figure 1. Location of Paranaíba River sub-catchment.

flow series for training the model before urbanization were
from 1976 to 1984 (3287 daily data), and the series from
1985 to 1986 were used as a set for the test (729 daily data).
For the post-urbanization, the training data selected were
from 1 January 2008 to 31 December 2016 (3287), and data
from 2018 to 2019 were used as a set for the test (729 daily
data).

The values of past rainfall and flow to be included in the
model took into account the physical characteristics of the
basin to find the reaction time. We used correlation analy-
sis to examine the interdependence between rainfall and flow
for both periods. Meanwhile, autocorrelation helped identify
past flow values influencing the current flow, as depicted in
Fig. 3.

From the correlation graph, it can be seen that for the cur-
rent period of the basin the degree of correlation between
rainfall and flow has dropped in relation to the other period,
requiring a smaller number of rain delays when compared to
the period prior to urbanization, this being still one of the
indications that the anthropological changes in the basin in-
fluenced its time of concentration. The same happens when
comparing the influence of previous flows with current flows
using autocorrelation with a confidence level of 99 %; there
is a greater need for past flows for the current period than for
the previous one, in addition to in both cases demonstrating
the strong correlation of bottom recharge to the river.
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Figure 2. Correlation analysis to period (a) pre-urbanization and
(b) post-urbanization.

The positive and insignificant correlations between rainfall
and flow for the current (0.32) and previous period (0.36)
suggest the influence of other variables on the observed
flows, something already expected, under the concepts of wa-
ter balance. In addition, the type of soil and its occupation,
combined with the low slopes in the central area favor the
recharge of the groundwater and groundwater flows; both di-
rectly influence the flow (Mendonça et al., 2021).

3.2 Model Structure definition

The training of ANNs can be supervised or unsupervised
(Raschka, 2015). According to Cristaldo (2020), supervised
training is the most used in hydrological forecasting prob-
lems. After training, it is expected that the network can gen-
eralize data and finds an answer in vectors different from the
training. The propagation capacity of the network is related
to its topology.

This study trained and validated ANNs using the Waikato
Environment for Knowledge Analysis (WEKA) software,
which uses a General Public License (GPL) written in Java,
and has a collection of machine learning algorithms, includ-
ing the MLP architecture. The software uses neurons in the
hidden layer equal to half the sum of arrays and classes with
the sigmoid function.

Using as neurons of the hidden layer equal to half the sum
of attributes and classes, several epochs equal to 1000, a mo-

Figure 3. Observed vs. forecasted flow in Paranaíba River for
(a) 1984 and (b) 2019. Comparisons include current time and 1–
4 d lags. Shaded area: ±20 % error.

mentum of 0.2, and a learning rate of 0.1. The software li-
brary’s perceptron model works with backpropagation, pro-
viding supervised training. In order to avoid the underfitting
and overfitting phenomena, cross-validation k-fold type was
applied (k = 4). A summary of the trained ANNs is presented
in Table 1.

3.3 Metrics for Model Evaluation

The performance of the model evaluation was assessed using
the determination coefficient (R2), Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Correlation Coeffi-
cient (CC) and the Nash-Sutcliffe Coefficient of Efficiency
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Table 1. ANN experiment summary.

1984 2019

Out Input variables Hidden Input variables Hidden
variable nodes nodes

Qt Ret , Ret−1, Ret−2, Ret−3, Qt−1 3 Ret , Ret−1, Qt−1 2
Qt+1 Ret , Ret−1, Ret−2, Qt , Qt−1 3 Ret , Ret−1, Qt , Qt−1 2
Qt+2 Ret , Ret−1, Ret−2, Qt , Qt−1 2 Ret , Ret−1, Qt , Qt−1 2
Qt+3 Ret , Ret−1, Ret−2, Qt , Qt−1 2 Ret , Ret−1, Qt , Qt−1 2
Qt+4 Ret , Ret−1, Ret−2, Qt , Qt−1 2 Ret , Ret−1, Qt , Qt−1 2

Ret−i Effective rainfall (mm), i = lag time (0, 1, 2,. . . , day). Qt−k Discharge at time (m3 s−1), t − k, k = 0, . . . , 4.

(NSE). These are some of the criteria adopted in the studies
of Mendonça et al. (2021), Dazzi, Vancondio and Mignosa
(2021). RMSE and MAE criteria are better as closer to 0.
The CC can range from−1 to 1, with values closer to the ex-
tremes indicating stronger correlations, and NSE should be
closer to 1 for the best fit (Dazzi et al., 2021).

4 Results and discussion

At the outputs of the two networks, the evaluation parame-
ters are similar, showing the decay of forecasting efficiency
over the horizon. The best values were found in the pre-
urbanization period (Table 2). As expected, the COE and
NSE coefficients indicate an almost perfect fit as they ap-
proach 1 for the first days. The NSE still serves as an indica-
tor of credibility for the model. According to the criteria es-
tablished by Moriasi et al. (2015), the NSE values obtained
for the two periods range from “very good” for the initial
days to “Satisfactory” for the last day.

Despite the existence of discordant points in the dispersion
results (Fig. 3), Pearson’s coefficient was greater than 0.86
and 0.78 for the first and second periods respectively in the
less accurate result and as expected were found for the most
distant forecast day, while the other performance criteria CC,
RMSE, MAE and NSE also resulted in plausible answers.

ANNs significantly influenced by the quantity and qual-
ity of the datasets that are trained. In Fig. 4, the data pre-
dominantly concentrates on lower flow values, and the model
appropriately replicates these. However, the higher variabil-
ity observed for intermediate values can be attributed to a
lack of information within this range, leading the model to
struggle in learning and accurately representing these values.
Solomatine et al. (2003) support this observation, noting sim-
ilar challenges in their studies. Moreover, hydrological vari-
ables, like flow, are substantially affected by anthropogenic
activities (Wu et al., 2015). The replacement of native forests
with agricultural practices, for instance, can intensify flood
events (Housspanossian et al., 2023). In the current period,
specifically in 2014/2015, a severe drought event occurred
(Marengo et al., 2015). Hydrologic signatures also affect the

Figure 4. Flow hydrographs estimated by the MLP-ANN. (a,
b) pre-urbanization period (1986–1985) and (c, d) After urbaniza-
tion (2019–2019).

Figure 5. Average rainfall before peak of discharge (10 d) for both
periods.

models (McMillan et al., 2023), and other natural mecha-
nisms influence floods (Sharma, 2018).

These results, consequently, were also reflected in the hy-
drographs, where deviations between the simulated and ob-
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Table 2. Comparison of errors for the verification dataset.

Test – 1984 Test – 2019

Prediction CC
MAE RMSE

NSE CC
MAE RMSE

NSE
(m3 s−1) (m3 s−1)

Qt 0.97 6.89 14.81 0.95 0.95 6.04 13.28 0.90
Qt+1 0.97 6.77 14.72 0.95 0.95 5.26 12.23 0.91
Qt+2 0.93 11.55 24.05 0.88 0.88 9.38 20.89 0.76
Qt+3 0.88 15.76 31.81 0.79 0.81 12.53 25.57 0.64
Qt+4 0.83 18.66 37.92 0.70 0.78 14.23 27.49 0.59

served curves are almost not perceptible (Fig. 4), demonstrat-
ing the coherence of the model and the respective numerical
capture of the basin bias.

Analyzing past flow peaks (Fig. 5) revealed that a higher
average of previous precipitation was necessary to trigger the
flow peak compared to current conditions. This discrepancy
in peak flow time is partly due to urbanization process. Soil
waterproofing reduces rainwater infiltration and accelerates
surface runoff. Thus, the water reaches the outlet faster in
urbanized areas, bringing forward the peak flow. The results
indicate that urbanization has sped up the flood arrival time,
as already demonstrated in other studies (e.g., Lu et al., 2023;
Nardi et al., 2018).

5 Conclusions

The study effectively simulated average daily flows using
ANN, producing results aligned with existing literature. Sta-
tistical relationships in input data were crucial for select-
ing influential input variables and eliminating less impact-
ful ones. The research also points out that anthropic change
in the basin, altering its natural dynamics and showing bet-
ter results in the pre-urbanization period. Moreover, it can
aid decision-making in extreme events due to its versatile
methodology, offering simpler replication than traditional
models with their intensive data and parameter needs.
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