Articles | Volume 385
https://doi.org/10.5194/piahs-385-267-2024
https://doi.org/10.5194/piahs-385-267-2024
Post-conference publication
 | 
18 Apr 2024
Post-conference publication |  | 18 Apr 2024

Seasonal precipitation forecasting with large scale climate predictors: a hybrid ensemble empirical mode decomposition-NARX scheme

Rim Ouachani, Zoubeida Bargaoui, and Taha Ouarda

Related authors

Comparison of Actual Evapotranspiration assessment by satellite-based model SEBS and hydrological model BBH in northern Tunisia
Nesrine Abid, Zoubeida Bargaoui, Aymen Ben Jaafar, and Chris M. Mannaerts
Proc. IAHS, 385, 471–476, https://doi.org/10.5194/piahs-385-471-2024,https://doi.org/10.5194/piahs-385-471-2024, 2024
Short summary
Randomized Block Nonparametric Temporal Disaggregation of Hydrological Variables RB-NPD (version1.0) – model development
Taesam Lee and Taha B. M. J. Ouarda
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-274,https://doi.org/10.5194/gmd-2022-274, 2023
Publication in GMD not foreseen
Short summary
Sensitivity of the Weather Research and Forecasting model (WRF) to downscaling extreme events over Northern Tunisia
Saoussen Dhib, Víctor Homar, Zoubeida Bargaoui, and Mariadelmar Vich
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-376,https://doi.org/10.5194/nhess-2020-376, 2021
Revised manuscript not accepted
Short summary
SENSITIVITY OF ACTUAL EVAPOTRANSPIRATION ESTIMATION USING THE SEBS MODEL TO VARIATION OF INPUT PARAMETERS (LST, DSSF, AERODYNAMICS PARAMETERS, LAI, FVC)
N. Abid, C. Mannaerts, and Z. Bargaoui
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1193–1200, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1193-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1193-2019, 2019
Development of a method of robust rain gauge network optimization based on intensity-duration-frequency results
A. Chebbi, Z. K. Bargaoui, and M. da Conceição Cunha
Hydrol. Earth Syst. Sci., 17, 4259–4268, https://doi.org/10.5194/hess-17-4259-2013,https://doi.org/10.5194/hess-17-4259-2013, 2013

Cited articles

Blöschl, G., Bierkens, M. F. P., Chambel, A., et al.: Twenty-three unsolved problems in hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158 https://doi.org/10.1080/02626667.2019.1620507, 2009. 
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, E. H., Zheng, Q., Tung, C. C., and Liu, H. H: The empirical mode decomposition method and the Hilbert spectrum for nonstationary time series analysis, P. Roy. Soc. Lond. A Mat., 454, 903–995, 1998.  
Kisi, O. Basari, C. and Latifoğlu, L.: Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series. Water Resour. Manag., 28, 4045–4057, https://doi.org/10.1007/s11269-014-0726-8, 2014. 
Liang, B. X., Hu, J. P., Liu, C., and Hong, B.: Data pre-processing and artificial neural networks for tidal level prediction at the Pearl River Estuary, J. Hydroinform., 23, 368–382, 2021. 
Margat, J. and Treyer, S.: L'eau Des Méditerranéens, Editions L'Harmattan, Paris, France, Vol. 158, ISBN 2296600255, 2004. 
Download
Short summary
This work is made to help mitigate some of the outcome of floods and enhance water management and monitoring, particularly for agriculture in the Medjerda river basin. A forecasting model is then built to predict monthly precipitation using pre-processing method in order to extract significant components. It can be concluded that climate indicators can add some additional information to enhance monthly precipitation forecasts at longer lead-times.