Articles | Volume 385
https://doi.org/10.5194/piahs-385-267-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.Seasonal precipitation forecasting with large scale climate predictors: a hybrid ensemble empirical mode decomposition-NARX scheme
Related authors
Cited articles
Blöschl, G., Bierkens, M. F. P., Chambel, A., et al.: Twenty-three unsolved problems in hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158 https://doi.org/10.1080/02626667.2019.1620507, 2009.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, E. H., Zheng, Q., Tung, C. C., and Liu, H. H: The empirical mode decomposition method and the Hilbert spectrum for nonstationary time series analysis, P. Roy. Soc. Lond. A Mat., 454, 903–995, 1998.
Kisi, O. Basari, C. and Latifoğlu, L.: Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series. Water Resour. Manag., 28, 4045–4057, https://doi.org/10.1007/s11269-014-0726-8, 2014.
Liang, B. X., Hu, J. P., Liu, C., and Hong, B.: Data pre-processing and artificial neural networks for tidal level prediction at the Pearl River Estuary, J. Hydroinform., 23, 368–382, 2021.
Margat, J. and Treyer, S.: L'eau Des Méditerranéens, Editions L'Harmattan, Paris, France, Vol. 158, ISBN 2296600255, 2004.