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Abstract. Much of northern Tunisia regularly experiences extremes of drought and flooding, with high rainfall
variability. The development of reliable and accurate seasonal rainfall forecasts can provide valuable information
to help mitigate some of the outcome of floods and enhance water management and monitoring, particularly for
agriculture. Whether climate indices oscillations contain some information to be useful for hydrological fore-
casting is worth investigating. Ensemble monthly rainfall forecasts are carried out using a hybrid neural network
model. The hybrid model called EEMD-NARX based on a non-linear autoregressive network with exogenous in-
puts (NARX) coupled to Ensemble Empirical Mode Decomposition (EEMD) method is developed in this work.
First, the EEMD is performed to extract significant information from modes of variability (IMF) associated to
climate indices and precipitation. Each IMF of selected indices as well as precipitation IMFs are then used as
inputs to the NARX forecasting model to forecast each IMF of precipitation. To make forecasts operational, we
reconstruct precipitation by summing of all forecasted IMFs to make comparison with observed precipitation
in the Medjerda river basin located in north Tunisia. Results show that IMFs of MEI and SOI indices can be
distinguished from a white noise at the 95 % level. It is also found that an oscillatory forcing coming from the
Atlantic influences the precipitation in the Mediterranean basin. The results indicate that exogenous inputs like
climatic indices improve the accuracy of forecasts in some in some precipitation stations. The correlation coeffi-
cient between observed and forecasted monthly precipitation is ranging from 0.7 to 0.8. EEMD allows extracting
significant components from exogenous inputs like climate indices that help reducing predictive uncertainty as
well as improving forecasts of a NARX model at longer lead-times.

Keywords. Rainfall forecasting; flood monitoring; UPH17; cli-
mate indicators; data-preprocessing; NARX

1 Introduction

Precipitation forecasting is useful for water resources and hy-
draulic structures management. Extreme events have devas-
tating consequences that disfigure the nature and cause thou-
sands of casualties. For new monitoring, good management
and forecasting of floods, it is essential to go through a pre-
cipitation forecasting. Seasonal forecasting is useful for the
agricultural sector which is among the key sectors of the

Tunisian economy. The precipitation process is difficult to
understand and to model because of the complexity of the
phenomena and the atmospheric processes that generate it.
Then a reliable forecast of the precipitation remains a chal-
lenge. Several methods could be used for precipitation fore-
casting from statistical to empirical models through the arti-
ficial intelligence models. Artificial neural networks (ANN)
are robust tools for modeling and forecasting many of the
nonlinear hydrological processes but their performance re-
mains linked to the complexity of the network. Improving
the performance of a neural network model can be obtained
with a preprocessing of the input and output data. Among the

Published by Copernicus Publications on behalf of the International Association of Hydrological Sciences.

S90BLIBUI PUB ‘SawalIxe ‘awl] ‘9oeds ssoloe abueyd pue AljigeleA — 2202SHYI



268 R. Ouachani et al.: Seasonal precipitation forecasting based on climatic signals using EEMD-NARX model

signal preprocessing methods we found the Empirical Mode
Decomposition (EMD) (Huang et al., 1998). It is one of the
methods in the frequency domain that can process non-linear
and non-stationary data. An application of this approach ap-
plied to environmental data analysis: rainfall, temperature,
wind and streamflow analysis is presented in Rao and Hsu
(2008). Kisi et al. (2014) reported the use of ANNs in fore-
casting hydrological variables as well as combined meth-
ods with ANNSs. In their work, the EMD-ANN model was
compared with the single ANN model. The optimal test re-
sults were obtained for the three-input to EMD-ANN model.
Liang et al. (2021) proposed three hybrid models that couple
varied pre-processing methods, which are empirical mode
decomposition (EMD), ensemble empirical mode decom-
position (EEMD), and empirical wavelet transform (EWT),
with the nonlinear autoregressive networks with exogenous
inputs (NARX) were applied to forecast tidal level.

In spite of the generalization ability of ANNs and due to
the nonlinear and non-stationary nature of the rainfall time
series, it is necessary the search for analysis alternatives that
improve the accuracy of predictions. Basha et al. (2015) de-
veloped a stochastic model that reproduces non-stationary
oscillation (NSO) processes by employing ensemble empir-
ical mode decomposition (EEMD) and non-parametric tech-
niques to predict the evolution of temperature, precipitation
and soil moisture. Ouachani et al. (2013) studied the effect of
climate variability on precipitation in the Medjerda basin and
found that indices related to ENSO as well as Mediterranean
Oscillation have potential power in forecasting.

Could exogenous inputs such as climate indices, defined
as difference between sea surface temperature or sea level
pressure between two different localizations in the sea, add
some additional information to an ANN based EEMD model
is the question that we will try to respond.

The remaining part of the paper is organized as follows.
The proposed methodology is detailed in Sect. 2, where a
brief description of Empirical Mode Decomposition (EMD),
EEMD, backpropagation scheme and NARX are also pre-
sented. Section 3 presents the hydro-climatic data and Sect. 4
the obtained results. Finally, the paper is concluded in Sect. 5.

2 Methodology

This paper proposes a hybrid model for long term rainfall
forecasting, adopting the Ensemble Empirical Mode Decom-
position (EEMD), and as a forecasting tool, the Nonlin-
ear AutoRegressive with eXogenous (NARX) input network.
The two methods are described below.

2.1 The Ensemble Empirical Mode Decomposition
(EEMD) method

As discussed in Bloschl et al. (2019), in UPH18, we need to
extract information from available data in order to inform the
building process of hydrological forecasting models. EMD is
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a nonparametric method that aims to decompose a signal into
a set of meaningful components called intrinsic mode func-
tions (IMFs). The complete mathematical description of the
empirical mode decomposition is beyond the scope of this
article, but can be found in Huang et al. (1998). A brief de-
scription of the algorithm can be made. The EMD extracts
a series of IMFs that must respect two criteria: (1) for each
IMF, the number of local extrema and the number of zero-
crossings are equal or differ at most by one; (2) at any time
and for every IMF, the mean value of the envelope defined
by the local minima and the local maxima is zero. The crite-
rion (1) forces an IMF to evolve as a series of periodic fluc-
tuations and prevents the superposition of multiple oscilla-
tions. The criterion (2) imposes a null trend to the IMFs and
is necessary to obtain IMFs with periodic zero-crossings as
imposed by the criterion (1). The process to extract an IMF
is called sifting. The sifting process gives the following final
decomposition:

q
X:ijlcjw. (1

Where C; with j=1,2,...,q are the IMFs and r is the
residue trend.

To verify whether IMFs contain exact signal or simply
noise, Wu and Huang (2004) established a statistical signif-
icance test (at any given statistical confidence level) based
on the relationship between the energy and the mean period
of each component. Wu and Huang (2009) proposed the en-
semble method by sifting an ensemble of white noise-added
signal and treats the mean as the final true result. The EEMD
requires two parameters: the variance of the added noise and
the number of samples. To calculate the average of each IMF,
their total number must be known. The approximate dyadic
properties of EMD suggest that the total number of IMFs
should be close to log2(N), where N is the number of ob-
servations (Wu and Huang, 2009). The stopping criterion is
generally a fixed number of iterations (e.g. 10).

2.2 Artificial Neural Network

The ANNs have been widely used in the scientific field of
time series prediction due to their inherent nonlinearity and
high robustness in noise. Typically, the challenge task of time
series prediction can be expressed as finding the appropriate
function F so as to acquire an estimate (¢ + D) of the time
series y at time ¢ + D (D = 1,2...) given the past values of
y up to time ¢, plus the values of exogenous input x:

$(t 4+ D)= F (y(t), .o y(t —dy), x(1), ..., X(t —dy))  (2)

where y(¢) and x(¢) represent the values of y and x in time
t respectively. The variables dy and d; are the lag time pa-
rameters of model and in case of D = 1 we have the one step
ahead prediction of time series y.

In this paper, we apply the backpropagation NN learning
algorithm, which includes four main steps as: feed forward
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computation, backpropagation to the output layer, backprop-
agation to the hidden layer and weight updates. This fore-
casting engine has good abilities for dealing with nonlinear
systems, such as forecasting problem of precipitation. The
structure of the NN is a three layered back propagation NN
with one input layer, one hidden layer and one output layer.

For each hidden neuron j (in the hidden layer), the input
xj and output y;j are defined as:

n

Ri=) wijyi 3)
i=1

3j=F (& +h)) @)

where w;; is the weight between the ith neuron in the input
layer and j""neuron in the hidden layer; F(.) is the activation
function of the hidden neurons; x; and y ; are the output of
input neuron 7 and hidden neuron j; 4 is the bias of hidden
neuron j. The initial number of neurons in the hidden layer is
considered. In this work, the learning rule used to adjust the
NAR weights is based on the Levenberg-Marquardt method,
one of the BP algorithms. It is being more powerful and faster
than the conventional gradient descent techniques.

2.3 Proposed EEMD-NARX model
The overall procedure for EMD-NARX is given below:

1. Decompose the concerned time series (X;) into a finite
number of intrinsic mode functions (IMFs).

2. Select significant IMF components using significance
test.

3. Calibrate the NARX model using each IMF; of the
selected indices and precipitation as inputs to predict
IMF, of the precipitation. Validate the model using data
from the validation period.

4. Predict the IMF components using the calibrated and
validated NARX model with the best performance in the
validation period.

5. Sum up the forecasted IMFs from each model.

The model is run 100 times using the bootstrap procedure
that adds noise with known standard deviation equal to 0.2
to the output. The mean of the obtained ensembles represent
the forecasting value. For all the 100 experiments, the perfor-
mance measure of the mean is computed and thus a reliable
estimate of the performance is obtained. For NARX, three
layers are considered: one input layer, one hidden layer and
one output layer. Several network architectures are tested by
varying the number of nodes in the hidden layer from 5 to 20.
The architecture with the best performance in the validation
period is used to make forecasts.
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Among the model efficiency criteria in the literature, the
coefficient of determination (R?) and the Nash—Sutcliffe co-
efficient (NASH) (Eq. 5) of efficiency are the most com-
monly employed performance evaluation criteria and are also
found to be good evaluation criteria by experts.

i =3
NASH=1-"1 )
Zl(yi -y

where n refers to the total number of observations; y;, y;, ¥
represent the predicted monthly precipitation, observed pre-
cipitation, and the mean observed precipitation data, respec-
tively.

The Willmott index of agreement (I0A) (Eq. 6) is also
used

Z(f’i—yi)z
mo=1-—"= (6)

b (|9 = 3|+ lyi = 1)
1=

IOA equal to 1 is being perfect score. It is sensitive to the
difference between the mean of y; and y; as well as the dif-
ference between the standard deviation of y;, y;.

3 Hydro-climatic data

The analysis of the monthly precipitation is carried out for
six rainfall stations reported in Ouachani et al. (2013) associ-
ated with the upper part of the Medjerda river basin (Fig. 1),
a trans-boundary river, located in northern Tunisia and which
accounts for the Mediterranean water budget in the Blue Plan
(Margat and Treyer, 2004). The water resources and agri-
cultural potential of this region is crucial for the Tunisian
economy. Therefore, the new monitoring, modelling and op-
timal management of these resources is of primary impor-
tance. Field observation of rainfall is provided by the Na-
tional Water Resources Division of Tunisia. These rainfall
stations were chosen for their long-term records (generally
exceeding 50 years) and for their good data quality. Four cli-
mate indices; the Multivariate Enso Index (MEI), Southern
Oscillation Index (SOI), North Atlantic Oscillation (NAO)
and Mediterranean Oscillation Index (MOAC) are used in
this work as suggested by Ouachani et al. (2013). The com-
mon period 1950 to 2011 between series is chosen. Before
analysis, the precipitation and climate indices time series are
standardized, by subtracting the mean and dividing by the
standard deviation, to ensure a comparable scale.

4 Results

4.1 Decomposition of precipitation using EEMD

The data is decomposed into IMFs by using the Matab code
of EEMD method provided by Wu and Huang (2009) with
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Figure 1. Geographic map of selected Rainfall stations in the Medjerda river basin with each seasonal precipitation.

100 ensembles and a noise level of 0.2. The monthly precip-
itation data recorded at Ghardimaou (52864) for the period
1950-2011 is shown in Fig. 2 as well as a total of 8 compo-
nents and the residue. The first component (C1) which has
a very high frequency is generally considered as noise. The
last component (C8) represents the trend. C4 to C6 show a
long-term oscillation with asymmetrical changes. While C7
represents the 40-year oscillation. The IMFs are subjected to
the significance test and are plotted in Fig. 3a. The result of
the significance test indicates that the three IMFs C2, C3 and
C5 can be considered as real oscillatory components and are
distinguishable from random noise. However, the other com-
ponents are not statistically significant. The test of signifi-
cance is performed also for climate indices. I can be shown
for example from Fig. 3b and c that all IMFs related to MEI
can be distinguished from a white noise at the 95 % level
while only the second component IMF2 of SOI is not signifi-
cant. All these components can be used as inputs to the fore-
casting model. Here we can focus on the UPH17 (Bloschl
et al., 2019) and how data preprocessing methods can help
extract significant components from traditional hydrologi-
cal observations. NAO and MOAC components on medium
time scales (IMF3, IMF5) are well correlated to precipitation
components with 6 months delay time. It can be concluded
that the negative phase of NAO as a tendency to generate
precipitations in the winter season. As discussed in the pre-
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vious section, the significant components as well as the other
components are forecasted by a NARX model.

4.2 Forecasting model based EEMD

The data are divided by block into three parts for train-
ing, validation and test (forecast), respectively assigning
60 %, 20 %, 20 %. Two models are compared. The first one
(EEMD-NARX) uses a set of inputs constructed from cli-
mate indices and precipitation with time delay ranging from
1 to 12 months. The second model (EEMD-ANN) has only
precipitation as inputs. Table 1 summarizes the performance
criteria estimates for the (EEMD-NARX), which is com-
pared against an EEMD-ANN model for the original signal
without exogenous inputs. From this we can observe good
forecasts. All performance indices are in accordance. It can
be observed good IAO coefficients exceeding 0.8. When the
EEMD-ANN scheme is unable to give good forecasts, the
EEMD-NARX outperforms a considerable difference. This
is shown in the case of station Jendouba (56990) and Ghardi-
maou (52864) in gray color row. The IAO criteria grow from
0.80 to 0.85.

Regressions of forecasted precipitations using (EEMD-
NARX) versus observed data precipitation shown in Fig. 4
reveal good forecasts of the monthly precipitation with cor-
relation exceeding 0.7 for all stations. Results are compara-
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ble to those found by Kisi et al. (2014). However we notice of time series. Therefore, forecasting of IMF1 component is
the disability of the model to forecast the highest values of difficult.

precipitation as the regression line is under the y = x line.
In addition the model overestimate low values as zero cross-
ing value of the regression line is positive in all stations. All
IFMs are well forecasted except IMF1 who can be distin-
guished from the others. The first IMF is the decomposition
of the signal in the very high frequency and contains some
noise even if it explains the precipitation signal as shown by
the significance test. As reported by Kisi et al. (2014), be-
cause, the IMF1 component is characterized by higher mean
frequencies and include noise component because EMD acts
a filter bank for Gaussian noise, white noise and turbulence

5 Conclusions

To forecast the future tendencies of nonlinear and nonsta-
tionary precipitation time series, a hybrid intelligent forecast-
ing model is proposed, which is based on EEMD and ANN.
EEMD allows extracting significant components to help re-
ducing predictive uncertainty as well as improving forecasts
of a neural network model. According to the obtained re-
sults, the EEMD-NARX scheme improves the forecasting re-
sults and offers a simple approach for the stable prediction of
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Table 1. Performance evaluation of the precipitation forecasts by the EEMD-NARX and EEMD-ANN models.

STATION  Qobsmoy  SigmQobs EEMD-NARX ‘ EEMD-ANN
NODES NASH IAO ‘ NODES NASH IAO
52864 43.67 42.85 14 0.52 0.85 5 0.26 0.80
51268 98.09 107.54 14 0.67 0.89 6 0.75 0.93
52665 86.09 86.85 15 0.35 0.82 7 0.45 0.86
50823 51.06 49.53 14 0.40 0.84 6 0.57 0.86
56990 42.98 40.11 13 0.49 0.84 5 0.42 0.79
58158 37.56 38.53 13 0.52 0.84 6 0.61 0.89
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Figure 4. Regressions of forecasted precipitation using EEMD-NARX model versus observed precipitations (circles) in the period 2003 to
2011 with the correlation coefficient for each station used in the study. The red line is the linear regression while the black dot line is the first

bisector.

non-stationary data when an EEMD-ANN is unable to give
good forecasts. It can be concluded that exogenous inputs
like climate indices can add some additional information to
enhance monthly precipitation forecasts. As a future work, it
would be interesting to explore the possibility of employing
different aggregation methods. Because the forecast of IMF1
is difficult, it would be useful to perform a comparison with
wavelet decomposition. The hybrid model has a good gener-
alization performance and long-term forecasting ability.

Code availability. All codes are developed using MATLAB soft-
ware. For the NARX method we used the Deep learning toolbox
of MATLAB (https://de.mathworks.com/products/deep-learning.
html, MathWorks, 2023.). The EEMD program is web-accessible.
The program and its instructions can be downloaded from http:
//rcada.ncu.edu.tw/ (NCU, 2023).
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Data availability. All Climate indices are freely accessed through
the Web while the precipitation data cannot be accessed for free.
It is provided by the National Water Resources Division of Tunisia
(http://www.agridata.tn/, last access: 14 May 2023).
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