Articles | Volume 384
https://doi.org/10.5194/piahs-384-19-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-384-19-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improvement of river network representation in Africa: application of an approach based on digital elevation data and environmental characteristics
Axel P. Belemtougri
CORRESPONDING AUTHOR
Laboratoire Eaux HydroSystèmes et Agriculture (LEHSA), Institut
International d'Ingénierie de l'Eau et de l'Environnement (2iE),
Ouagadougou, Burkina Faso
Agnès Ducharne
Milieux Environnementaux, Transferts et Interactions dans les
hydrosystèmes et les Sols (METIS), Sorbonne Université, CNRS, EPHE, Paris, France
Harouna Karambiri
Laboratoire Eaux HydroSystèmes et Agriculture (LEHSA), Institut
International d'Ingénierie de l'Eau et de l'Environnement (2iE),
Ouagadougou, Burkina Faso
Related authors
No articles found.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
Yetchékpo Patrick Gbohoui, Roland Yonaba, Tazen Fowé, Bernadin Elégbédé Manou, Taofic Bacharou, Yvon-Carmen Hountondji, Ernest Amoussou, Luc O. Sintondji, Jean-Emmanuel Paturel, Harouna Karambiri, and Hamma Yacouba
Proc. IAHS, 385, 435–441, https://doi.org/10.5194/piahs-385-435-2024, https://doi.org/10.5194/piahs-385-435-2024, 2024
Short summary
Short summary
Runoff simulation is complex in poorly gauged and data-scarce hydrosystems of the West African Sahel. The results of this study showed that multi-sites calibration without nested sub-catchments is the best modelling scheme for capturing the hydrological response of the Sahelian catchments. This approach could therefore be applied to obtain regionalized parameter values for the West African Sahel region from small catchments distributed across all climatic zones.
Jean-Emmanuel Paturel, Bérenger Kouacou, Franck Lohou, Frédéric Pons, Kouakou Dje, Naky Coulibaly, Harouna Karambiri, Valérie Borrell, Andrew Ogilvie, and Eric Servat
Proc. IAHS, 385, 219–224, https://doi.org/10.5194/piahs-385-219-2024, https://doi.org/10.5194/piahs-385-219-2024, 2024
Short summary
Short summary
In 2011, the XVI World Meteorological Congress urged Members to make every effort to prevent the deterioration of climate-relevant data and to make these data available to support climate change analyses and relevant climate services. In response to the WMO call, we used the NUNIEAU software which allows the digitization of different types of paper documents by automatic recognition. This software has been used on rainfall pluviograms in Burkina Faso and Côte d'Ivoire.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024, https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
Short summary
We show a new irrigation scheme included in the ORCHIDEE land surface model. The new irrigation scheme restrains irrigation due to water shortage, includes water adduction, and represents environmental limits and facilities to access water, due to representing infrastructure in a simple way. Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Yetchékpo Patrick Gbohoui, Jean-Emmanuel Paturel, Tazen Fowe, Harouna Karambiri, and Hamma Yacouba
Proc. IAHS, 384, 269–273, https://doi.org/10.5194/piahs-384-269-2021, https://doi.org/10.5194/piahs-384-269-2021, 2021
Short summary
Short summary
Studying the impact of global change on water resources is essential for the West African Sahel (WAS), which is known for its fragility. In the Sahelian part of the Nakanbé watershed, located in Burkina Faso, the impact study indicated that environmental change and its interactions were the main drivers of runoff change over the period 1965-1994. Our results show that appropriate environmental management strategies could contribute to sustainable land and water resources management in the WAS.
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas, Amen Al-Yaari, Jean-Pierre Wigneron, Vladislav Bastrikov, Philippe Peylin, Fabienne Maignan, and Nicolas Vuichard
Hydrol. Earth Syst. Sci., 25, 2199–2221, https://doi.org/10.5194/hess-25-2199-2021, https://doi.org/10.5194/hess-25-2199-2021, 2021
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Salma Tafasca, Agnès Ducharne, and Christian Valentin
Hydrol. Earth Syst. Sci., 24, 3753–3774, https://doi.org/10.5194/hess-24-3753-2020, https://doi.org/10.5194/hess-24-3753-2020, 2020
Short summary
Short summary
In land surface models (LSMs), soil properties are inferred from soil texture. In this study, we use different input global soil texture maps from the literature to investigate the impact of soil texture on the simulated water budget in an LSM. The medium loamy textures give the highest evapotranspiration and lowest total runoff rates. However, the different soil texture maps result in similar water budgets because of their inherent similarities, especially when upscaled at the 0.5° resolution.
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Pierre Regnier, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 13, 507–520, https://doi.org/10.5194/gmd-13-507-2020, https://doi.org/10.5194/gmd-13-507-2020, 2020
Short summary
Short summary
In this second part of the study, we performed simulations of the carbon and water budget of the Lena catchment with the land surface model ORCHIDEE MICT-LEAK, enabled to simulate dissolved organic carbon (DOC) production in soils and its transport and fate in high-latitude inland waters. We compare simulations using this model to existing data sources to show that it is capable of reproducing dissolved carbon fluxes of potentially great importance for the future of the global permafrost.
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 12, 3503–3521, https://doi.org/10.5194/gmd-12-3503-2019, https://doi.org/10.5194/gmd-12-3503-2019, 2019
Short summary
Short summary
Few Earth system models represent permafrost soil biogeochemistry, contributing to uncertainty in estimating its response and that of the planet to warming. Because the permafrost contains over double the carbon in the present atmosphere, its fate as it is
unlockedby warming is globally significant. One way it can be mobilised is into rivers, the sea, or the atmosphere: a vector previously ignored in climate modelling. We present a model scheme for resolving this vector at a global scale.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Shushi Peng, Gerhard Krinner, Ardalan Tootchi, Agnès Ducharne, and Adam Hastie
Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, https://doi.org/10.5194/gmd-12-2961-2019, 2019
Short summary
Short summary
We present a model that can simulate the dynamics of peatland area extent and the vertical buildup of peat. The model is validated across a range of northern peatland sites and over the Northern Hemisphere (> 30° N). It is able to reproduce the spatial extent of northern peatlands and peat carbon accumulation over the Holocene.
Ardalan Tootchi, Anne Jost, and Agnès Ducharne
Earth Syst. Sci. Data, 11, 189–220, https://doi.org/10.5194/essd-11-189-2019, https://doi.org/10.5194/essd-11-189-2019, 2019
Short summary
Short summary
The role of wetlands at regional and global scales depends on their distribution and extent, which is highly uncertain in the literature. We developed comprehensive wetland maps using satellite imagery products and ground water modeling. These high-resolution maps encompass regularly flooded to non-flooded groundwater wetlands, covering more than 21 % of the land surface area, which is among the highest estimates. Wetlands are particularly concentrated over the tropics and northern cold zones.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Trung Nguyen-Quang, Jan Polcher, Agnès Ducharne, Thomas Arsouze, Xudong Zhou, Ana Schneider, and Lluís Fita
Geosci. Model Dev., 11, 4965–4985, https://doi.org/10.5194/gmd-11-4965-2018, https://doi.org/10.5194/gmd-11-4965-2018, 2018
Short summary
Short summary
This study presents a revised river routing scheme for the Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. The revision is carried out to benefit from the high-resolution topography provided by the Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS). We demonstrate that the finer description of the catchments allows for an improvement of the simulated river discharge of ORCHIDEE in an area with complex topography.
Ardalan Tootchi, Anne Jost, and Agnès Ducharne
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-48, https://doi.org/10.5194/hess-2018-48, 2018
Manuscript not accepted for further review
Short summary
Short summary
There is a massive disagreement between wetland extent estimates in literature (3 to 21 % of the land surface area). Some inundated wetlands could be detected using satellite imagery while non-inundated ones and those below vegetation are not easily detectedable. We mapped all wetlands, using both satellite data and geomorphological information, showing large wetland over boreal and tropical zones plus thousands of small oases in arid areas.
Matthieu Guimberteau, Dan Zhu, Fabienne Maignan, Ye Huang, Chao Yue, Sarah Dantec-Nédélec, Catherine Ottlé, Albert Jornet-Puig, Ana Bastos, Pierre Laurent, Daniel Goll, Simon Bowring, Jinfeng Chang, Bertrand Guenet, Marwa Tifafi, Shushi Peng, Gerhard Krinner, Agnès Ducharne, Fuxing Wang, Tao Wang, Xuhui Wang, Yilong Wang, Zun Yin, Ronny Lauerwald, Emilie Joetzjer, Chunjing Qiu, Hyungjun Kim, and Philippe Ciais
Geosci. Model Dev., 11, 121–163, https://doi.org/10.5194/gmd-11-121-2018, https://doi.org/10.5194/gmd-11-121-2018, 2018
Short summary
Short summary
Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module.
Ronny Lauerwald, Pierre Regnier, Marta Camino-Serrano, Bertrand Guenet, Matthieu Guimberteau, Agnès Ducharne, Jan Polcher, and Philippe Ciais
Geosci. Model Dev., 10, 3821–3859, https://doi.org/10.5194/gmd-10-3821-2017, https://doi.org/10.5194/gmd-10-3821-2017, 2017
Short summary
Short summary
ORCHILEAK is a new branch of the terrestrial ecosystem model ORCHIDEE that represents dissolved organic carbon (DOC) production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin.
Matthieu Guimberteau, Philippe Ciais, Agnès Ducharne, Juan Pablo Boisier, Ana Paula Dutra Aguiar, Hester Biemans, Hannes De Deurwaerder, David Galbraith, Bart Kruijt, Fanny Langerwisch, German Poveda, Anja Rammig, Daniel Andres Rodriguez, Graciela Tejada, Kirsten Thonicke, Celso Von Randow, Rita C. S. Von Randow, Ke Zhang, and Hans Verbeeck
Hydrol. Earth Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, https://doi.org/10.5194/hess-21-1455-2017, 2017
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
B. N. Nka, L. Oudin, H. Karambiri, J. E. Paturel, and P. Ribstein
Hydrol. Earth Syst. Sci., 19, 4707–4719, https://doi.org/10.5194/hess-19-4707-2015, https://doi.org/10.5194/hess-19-4707-2015, 2015
Short summary
Short summary
The region of West Africa is undergoing important climate and environmental changes affecting the magnitude and occurrence of floods. This study aims to analyze the evolution of flood hazard in the region and to find links between flood hazards pattern and rainfall or vegetation index patterns.
P. Roudier, A. Ducharne, and L. Feyen
Hydrol. Earth Syst. Sci., 18, 2789–2801, https://doi.org/10.5194/hess-18-2789-2014, https://doi.org/10.5194/hess-18-2789-2014, 2014
M. Guimberteau, A. Ducharne, P. Ciais, J. P. Boisier, S. Peng, M. De Weirdt, and H. Verbeeck
Geosci. Model Dev., 7, 1115–1136, https://doi.org/10.5194/gmd-7-1115-2014, https://doi.org/10.5194/gmd-7-1115-2014, 2014
Cited articles
BD Carthage: Cours d'eau – Métropole 2016 –, available at: https://www.data.gouv.fr/fr/datasets/cours-deau-metropole-2016-bd-carthage/, last access: 14 April 2021.
Brakebill, J. W., Wolock, D. M., and Terziotti, S.: Digital Hydrologic Networks Supporting Applications Related to Spatially Referenced Regression
Modeling 1, J. Am. Water Resour. Assoc., 47, 916–932, 2011.
Colombo, R., Vogt, J. V., Soille, P., Paracchini, M. L., and de Jager, A.:
Deriving river networks and catchments at the European scale from medium
resolution digital elevation data, Catena, 70, 296–305,
https://doi.org/10.1016/j.catena.2006.10.001, 2007.
Da Ros, D. and Borga, M.: Use of digital elevation model data for the
derivation of the geomorphological instantaneous unit hydrograph, Hydrol. Process., 11, 13–33, 1997.
FAO: AQUAMAPS Global spatial database on water and agriculture, Food and
Agriculture Organization of the United Nations, available at: https://data.apps.fao.org/aquamaps/ (last access: 21 April 2021), 2014.
Heine, R. A., Lant, C. L., and Sengupta, R. R.: Development and Comparison of Approaches for Automated Mapping of Stream Channel Networks, Ann. Assoc. Am. Geogr., 94, 477–490, https://doi.org/10.1111/j.1467-8306.2004.00409.x, 2004.
Horton, R. E.: Erosional development of streams and their drainage basins;
hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull., 56, 275–370, 1945.
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From
Spaceborne Elevation Data, EOS Trans. Am. Geophys. Union [data set], 89, 93, https://doi.org/10.1029/2008EO100001, 2008.
Liu, X., Peterson, J., and Zhang, Z.: High-resolution DEM generated from LiDAR data for water resource management, in: Proceedings of the International Congress on Modelling and Simulation (MODSIM05), December 2005, Australia, 1402–1408, 2005.
Moglen, G. E., Eltahir, E. A. B., and Bras, R. L.: On the sensitivity of
drainage density to climate change, Water Resour. Res., 34, 855–862, https://doi.org/10.1029/97WR02709, 1998.
O'Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from
digital elevation data, Comput. Vis. Graph. Image Process., 28, 323–344, 1984.
Ouellet Dallaire, C., Lehner, B., Sayre, R., and Thieme, M.: A multidisciplinary framework to derive global river reach classifications at
high spatial resolution, Environ. Res. Lett., 14, 024003, https://doi.org/10.1088/1748-9326/aad8e9, 2019.
PANA: Programme National d'adaptation de la variabilité et aux changements climatiques, Ministère de l'environnement et du cadre du
vie, Burkina Faso, 2007.
Papageorgaki, I. and Nalbantis, I.: Definition of critical support area
revisited, European Water, 57, 273–278, 2017.
Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro, G., and Dietrich, W. E.: A geometric framework for channel network extraction from
lidar: Nonlinear diffusion and geodesic paths, J. Geophys. Res.-Earth, 115,
F01002, https://doi.org/10.1029/2009JF001254, 2010.
Schneider, A., Jost, A., Coulon, C., Silvestre, M., Théry, S., and Ducharne, A.: Global-scale river network extraction based on high-resolution
topography and constrained by lithology, climate, slope, and observed
drainage density: Global-Scale River Network Extraction, Geophys. Res. Lett., 44, 2773–2781, https://doi.org/10.1002/2016GL071844, 2017.
Tucker, G. E., Catani, F., Rinaldo, A., and Bras, R. L.: Statistical analysis of drainage density from digital terrain data, Geomorphology, 36, 187–202,
https://doi.org/10.1016/S0169-555X(00)00056-8, 2001.
US Geological Survey: HYDRO1k Elevation Derivative Database, available at: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-hydro1k?qt-science_center_objects=0#qt-science_center_objects (last access: 21 April 2021), 2000.
Yan, Y., Lidberg, W., Tenenbaum, D. E., and Pilesjö, P.: The accuracy of
drainage network delineation as a function of environmental factors: A case
study in Central and Northern Sweden, Hydrol. Process., 34, 5489–5504, 2020.