Articles | Volume 383
https://doi.org/10.5194/piahs-383-135-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.Long-term persistence in discharge time series of mountainous catchments in the Elbe River basin
Related authors
Cited articles
Beran, J.: Statistics for Long-Memory Processes, Chapman & Hall, New
York, 1994.
Borchers, H. W.: pracma: Practical Numerical Math Functions, R package version 2.2.9, available at: https://CRAN.R-project.org/package=pracma (last access: 21 April 2020), 2019.
Garcia, C. A.: nonlinearTseries: Nonlinear Time Series Analysis, R package version 0.2.8, available at: https://CRAN.R-project.org/package=nonlinearTseries (last access: 21 April 2020), 2020.
Graves, T., Gramacy, R., Watkins, N., and Franzke, C.: A brief history of
long memory: Hurst, Mandelbrot and the road to ARFIMA, 1951–1980, Entropy,
19, 437, https://doi.org/10.3390/e19090437, 2017.
Hamed, K. H.: Trend detection in hydrologic data: the Mann–Kendall trend
test under the scaling hypothesis, J. Hydrol., 349, 350–363,
https://doi.org/10.1016/j.jhydrol.2007.11.009, 2008.