Articles | Volume 382
https://doi.org/10.5194/piahs-382-831-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-382-831-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Integrated management of groundwater exploitation and recharge in Shanghai based on land subsidence control
Tianliang Yang
CORRESPONDING AUTHOR
Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry
of Natural Resources, Shanghai, China
Shanghai Institute of Geological Survey, Shanghai, China
Shanghai Engineering Research Center of Land Subsidence, Shanghai, China
Xuexin Yan
Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry
of Natural Resources, Shanghai, China
Shanghai Institute of Geological Survey, Shanghai, China
Shanghai Engineering Research Center of Land Subsidence, Shanghai, China
Xinlei Huang
Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry
of Natural Resources, Shanghai, China
Shanghai Institute of Geological Survey, Shanghai, China
Shanghai Engineering Research Center of Land Subsidence, Shanghai, China
Jianzhong Wu
Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry
of Natural Resources, Shanghai, China
Shanghai Institute of Geological Survey, Shanghai, China
Shanghai Engineering Research Center of Land Subsidence, Shanghai, China
Related authors
Qing-bo Yu, Qing Wang, Xue-xin Yan, Tian-liang Yang, Jian-ping Chen, Meng Yao, Kai Zhou, and Xin-lei Huang
Proc. IAHS, 382, 381–386, https://doi.org/10.5194/piahs-382-381-2020, https://doi.org/10.5194/piahs-382-381-2020, 2020
Short summary
Short summary
The ground deformation of a typical reclamation area in Chongming East Shoal, Shanghai was monitored by the SBAS method. Moreover, corresponding the monitoring results to the soil properties with field investigation and laboratory tests. The soil properties including physical and chemical properties, compressibility, micropore distribution and microstructure characteristics, are studied, and then the monitoring results are reasonably interpreted, providing a reference for future construction.
Yan Xu, Xuexin Yan, and Tianliang Yang
Proc. IAHS, 382, 219–224, https://doi.org/10.5194/piahs-382-219-2020, https://doi.org/10.5194/piahs-382-219-2020, 2020
Xinlei Huang, Tianliang Yang, Jianzhong Wu, Jinxin Lin, and Ye He
Proc. IAHS, 382, 755–759, https://doi.org/10.5194/piahs-382-755-2020, https://doi.org/10.5194/piahs-382-755-2020, 2020
Jinxin Lin, Hanmei Wang, Tianliang Yang, and Xinlei Huang
Proc. IAHS, 382, 131–135, https://doi.org/10.5194/piahs-382-131-2020, https://doi.org/10.5194/piahs-382-131-2020, 2020
T. L. Yang, X. X. Yan, H. M. Wang, X. L. Huang, and G. H. Zhan
Proc. IAHS, 372, 1–5, https://doi.org/10.5194/piahs-372-1-2015, https://doi.org/10.5194/piahs-372-1-2015, 2015
Qing-bo Yu, Qing Wang, Xue-xin Yan, Tian-liang Yang, Jian-ping Chen, Meng Yao, Kai Zhou, and Xin-lei Huang
Proc. IAHS, 382, 381–386, https://doi.org/10.5194/piahs-382-381-2020, https://doi.org/10.5194/piahs-382-381-2020, 2020
Short summary
Short summary
The ground deformation of a typical reclamation area in Chongming East Shoal, Shanghai was monitored by the SBAS method. Moreover, corresponding the monitoring results to the soil properties with field investigation and laboratory tests. The soil properties including physical and chemical properties, compressibility, micropore distribution and microstructure characteristics, are studied, and then the monitoring results are reasonably interpreted, providing a reference for future construction.
Yan Xu, Xuexin Yan, and Tianliang Yang
Proc. IAHS, 382, 219–224, https://doi.org/10.5194/piahs-382-219-2020, https://doi.org/10.5194/piahs-382-219-2020, 2020
Xinlei Huang, Tianliang Yang, Jianzhong Wu, Jinxin Lin, and Ye He
Proc. IAHS, 382, 755–759, https://doi.org/10.5194/piahs-382-755-2020, https://doi.org/10.5194/piahs-382-755-2020, 2020
Jianzhong Wu, Xuexin Yan, Tianliang Yang, and Xinlei Huang
Proc. IAHS, 382, 709–713, https://doi.org/10.5194/piahs-382-709-2020, https://doi.org/10.5194/piahs-382-709-2020, 2020
Yun Zhang, Guofeng He, Jichun Wu, Zhiduo Zhu, Xuexin Yan, and Tianliang Yang
Proc. IAHS, 382, 387–390, https://doi.org/10.5194/piahs-382-387-2020, https://doi.org/10.5194/piahs-382-387-2020, 2020
Short summary
Short summary
Groundwater pumping can cause severe land subsidence and decrease ground surface level. A physical model test were conducted to mimic this process. An interesting phenomenon is that, due to their low permeability, aquitard units may expand in a period when groundwater is withdrawn from the neighboring aquifer units, and they may compact when groundwater is recharged into the neighbor aquifer units.
Jinxin Lin, Hanmei Wang, Tianliang Yang, and Xinlei Huang
Proc. IAHS, 382, 131–135, https://doi.org/10.5194/piahs-382-131-2020, https://doi.org/10.5194/piahs-382-131-2020, 2020
Jianxiu Wang, Yansheng Deng, Na Xu, Tianliang Yang, Xuexin Yan, Hanmei Wang, Xinlei Huang, Xiaotian Liu, and Xiangjun Pei
Proc. IAHS, 382, 559–564, https://doi.org/10.5194/piahs-382-559-2020, https://doi.org/10.5194/piahs-382-559-2020, 2020
Short summary
Short summary
In Shanghai, China, land subsidence is distributed along the belt near a subway line. In order to figure out the mechanical response of the tunnel surroundings, the PFC2D software based on a discrete element method is introduced to simulate the section of the metro tunnel. The linear contact bond model was employed to reflect the characteristics of clay. The mechanical response law and subsidence mechanism were investigated.
J. Liu, H. Wang, and X. Yan
Proc. IAHS, 372, 543–553, https://doi.org/10.5194/piahs-372-543-2015, https://doi.org/10.5194/piahs-372-543-2015, 2015
T. L. Yang, X. X. Yan, H. M. Wang, X. L. Huang, and G. H. Zhan
Proc. IAHS, 372, 1–5, https://doi.org/10.5194/piahs-372-1-2015, https://doi.org/10.5194/piahs-372-1-2015, 2015
X. Jiao, X. X. Yan, and H. M. Wang
Proc. IAHS, 372, 475–479, https://doi.org/10.5194/piahs-372-475-2015, https://doi.org/10.5194/piahs-372-475-2015, 2015
Cited articles
Wei, Z. X., Wang, H.M., Wu, J. Z., Fang, Z. L., and Liu, G. B.: Land subsidence and its influences on
urban security of Shanghai, Shanghai Geology, 30, 34–39, 2009.
Yan, X. X., Yang, T. L., Lin, J. X., Huang, X. L., and Wang, J. X.: Influence factors analysis and calculation of land subsidence caused by dewatering of ultra-deep foundation pit, Journal of Nanjing University (Natural Science), 55, 401–408,
2019.
Yang, T. L.: Analysis of the Land Subsidence Impact of Dewatering of Deep
Foundation Pits, Shanghai Land Resour., 33, 41–44, 2012.
Yang, T. L. and Gong, S. L.: Microscopic analysis of the engineering geologic
behavior of soft clay in Shanghai, China, B. Eng. Geol.
Environ., 69, 607–615, 2010.
Yang, T. L., Wang, H. M., and Jiao, X.: Land subsidence zoning control in Shanghai,
Shanghai Geology, 35, 105–109, 2014.