Articles | Volume 382
https://doi.org/10.5194/piahs-382-683-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-382-683-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Remotely triggered subsidence acceleration in Mexico City induced by the September 2017 Mw 7.1 Puebla and the Mw 8.2 Tehuantepec September 2017 earthquakes
Dario Solano-Rojas
Facultad de Ingeniería, Universidad Nacional Autónoma de México, México City, CDMX, México
Enrique Cabral-Cano
CORRESPONDING AUTHOR
Instituto de Geofísica, Universidad Nacional Autónoma de México, México City, CDMX, México
Enrique Fernández-Torres
Instituto de Geofísica, Universidad Nacional Autónoma de México, México City, CDMX, México
Emre Havazli
Rosenstiel School of Marine and Atmospheric
Science, University of Miami, Miami, Florida, USA
now at: Institute of Technology, Jet Propulsion Laboratory California, Pasadena, CA, USA
Shimon Wdowinski
Department of Earth and
Environment, Florida International University, Miami, FL, USA
Luis Salazar-Tlaczani
Instituto de Geofísica, Universidad Nacional Autónoma de México, México City, CDMX, México
Related authors
Enrique Fernández-Torres, Enrique Cabral-Cano, Dario Solano-Rojas, Emre Havazli, and Luis Salazar-Tlaczani
Proc. IAHS, 382, 583–587, https://doi.org/10.5194/piahs-382-583-2020, https://doi.org/10.5194/piahs-382-583-2020, 2020
Short summary
Short summary
Land subsidence in Mexico City results from a combination of groundwater resources' overexploitation and the local stratigraphic nature. A Sentinel-1 based subsidence analysis velocity map was used as the basis for a population density weighted land subsidence correlation analysis. Our Land Subsidence Risk assessment indicates that 15.43 % of the population of Mexico City live in intermediate, high and very-high risk zones which corresponds to 1 358 873 inhabitants.
Dario E. Solano-Rojas, Shimon Wdowinski, Enrique Cabral-Cano, Batuhan Osmanoglu, Emre Havazli, and Jesus Pacheco-Martínez
Proc. IAHS, 382, 173–177, https://doi.org/10.5194/piahs-382-173-2020, https://doi.org/10.5194/piahs-382-173-2020, 2020
Short summary
Short summary
Differential subsidence produces damage to infrastructure and geological media. However, detecting and mapping differential subsidence at a regional scale using satellite date becomes challenging when considering the large amount of displacement products that can be produced. Here we show some examples of our work with products at different scale and focused on different aspects of differential subsidence.
Laura A. Ermert, Enrique Cabral-Cano, Estelle Chaussard, Darío Solano-Rojas, Luis Quintanar, Diana Morales Padilla, Enrique A. Fernández-Torres, and Marine A. Denolle
Solid Earth, 14, 529–549, https://doi.org/10.5194/se-14-529-2023, https://doi.org/10.5194/se-14-529-2023, 2023
Short summary
Short summary
Mexico City is built on a unique ground containing the clay-rich sediments of the ancient lake Texcoco. Continuous imperceptible shaking of these deposits by city traffic and other sources allows us to monitor changes in the subsurface seismic wave speed. Wave speed varies seasonally, likely due to temperature and rain effects; it temporarily drops after large earthquakes then starts to recover. Throughout the studied period, it increased on average, which may be related to soil compaction.
Shimon Wdowinski, Talib Oliver-Cabrera, and Simone Fiaschi
Proc. IAHS, 382, 207–211, https://doi.org/10.5194/piahs-382-207-2020, https://doi.org/10.5194/piahs-382-207-2020, 2020
Short summary
Short summary
Over the past decade, several coastal communities in southeast Florida have experienced a significant increase in flooding frequency. In a recent project, funded by the state of Florida, we monitor coastal subsidence in southeast Florida using GPS and InSAR observations, in order to evaluate the contribution of local subsidence to the increased coastal flooding hazard.
Talib Oliver-Cabrera, Shimon Wdowinski, Sarah Kruse, and Tonian Robinson
Proc. IAHS, 382, 155–159, https://doi.org/10.5194/piahs-382-155-2020, https://doi.org/10.5194/piahs-382-155-2020, 2020
Short summary
Short summary
Sinkhole activity in west-central Florida is a major hazard for people and property. In this work, we use radar interferometry acquired over a selected region in Hernando County in west-central Florida to observe small localized deformation possibly caused by sinkhole activity. Results reveal several areas of localized subsidence at rates ranging from −3.7 to −4.9 mm/yr.
Enrique Fernández-Torres, Enrique Cabral-Cano, Dario Solano-Rojas, Emre Havazli, and Luis Salazar-Tlaczani
Proc. IAHS, 382, 583–587, https://doi.org/10.5194/piahs-382-583-2020, https://doi.org/10.5194/piahs-382-583-2020, 2020
Short summary
Short summary
Land subsidence in Mexico City results from a combination of groundwater resources' overexploitation and the local stratigraphic nature. A Sentinel-1 based subsidence analysis velocity map was used as the basis for a population density weighted land subsidence correlation analysis. Our Land Subsidence Risk assessment indicates that 15.43 % of the population of Mexico City live in intermediate, high and very-high risk zones which corresponds to 1 358 873 inhabitants.
Dario E. Solano-Rojas, Shimon Wdowinski, Enrique Cabral-Cano, Batuhan Osmanoglu, Emre Havazli, and Jesus Pacheco-Martínez
Proc. IAHS, 382, 173–177, https://doi.org/10.5194/piahs-382-173-2020, https://doi.org/10.5194/piahs-382-173-2020, 2020
Short summary
Short summary
Differential subsidence produces damage to infrastructure and geological media. However, detecting and mapping differential subsidence at a regional scale using satellite date becomes challenging when considering the large amount of displacement products that can be produced. Here we show some examples of our work with products at different scale and focused on different aspects of differential subsidence.
M.-J. Jo, B. Osmanoglu, B. Zhang, and S. Wdowinski
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 711–713, https://doi.org/10.5194/isprs-archives-XLII-3-711-2018, https://doi.org/10.5194/isprs-archives-XLII-3-711-2018, 2018
B. Zhang, S. Wdowinski, T. Oliver-Cabrera, R. Koirala, M. J. Jo, and B. Osmanoglu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2237–2244, https://doi.org/10.5194/isprs-archives-XLII-3-2237-2018, https://doi.org/10.5194/isprs-archives-XLII-3-2237-2018, 2018
Cited articles
Alaska Satellite Facility SAR Data Center: Sentinel-1 Interferometric Wide swath Track 143, Frame 3203, descending mode, acquired between 19/07/2017 and 29/09/2017, available at: https://www.asf.alaska.edu, last access: 14 April 2020.
Auvinet, G., Méndez, E., and Juárez, M.: El Subsuelo de la Ciudad de
Mexico, Instituto de Ingenieriìa, UNAM, Vol. III, 2017.
Cabral-Cano, E., Dixon, T. H., Miralles-Wilhelm, F., Sánchez-Zamora, O., Díaz-Molina, O., and Carande, R. E.: Space geodetic imaging of rapid ground subsidence
in Mexico City, B. Geol. Soc. Am., 120, 1556–1566, 2008.
Carrillo, N.: Influence of artesian wells on the sinking of México City,
in: Proceedings of the Second International Conference on Soils Mechanics,
Rotterdam, Holland, International Society for Soil Mechanics and
Geotechnical Engineering, vol. VII, 1948.
CENAPRED: Análisis de la Vulnerabilidad Física a la Subsidencia y
agrietamiento en la Ciudad de México, Centro de Geociencias, Universidad
Nacional Autónoma de México, México, 23 pp., 2017.
Du, Z., Ge, L., Ng, A. H.-M., Zhu, Q., Zhang, Q., Kuang, J., and Dong, Y.:
Long-term subsidence in Mexico City from 2004 to 2018 revealed by five
synthetic aperture radar sensors, Land Degrad. Dev., 1–17, 2019.
Figueroa-Vega, F.: Case history no. 9.8, Mexico, in: Guidebook to Studies of Land Subsidence due to Ground-Water Withdrawal, edited by: Poland, J. F., United Nations Educational Scientific and Cultural
Organization, Paris, France, 217–232, 1984.
Gayol, R.: Estudio de las perturbaciones que en el fondo de la Ciudad de
México ha producido el drenaje de las aguas del subsuelo, por las obras
del desague y rectificación de los errores a que ha dado lugar una
incorrecta interpretación de los efectos producidos, Rev. Mex. Ing. Arquit., 3, 96–132, 1925.
López-Quiroz, P., Doin, M. P., Tupin, F., Briole, P., and Nicolas, J. M.:
Time-series analysis of Mexico City subsidence constrained by radar
interferometry, J. Appl. Geophys., 69, 1–15, 2009.
Ortega, A., Cherry, J. A., and Rudolph, D. L.: Largescale aquitard
consolidation near Mexico City, Ground Water, 31, 708–718, 1993.
Osmanoğlu, B., Dixon, T. H., Wdowinski, S., Cabral-Cano, E., and Jiang, Y.: Mexico City subsidence observed with persistent scatterer InSAR, Int. J.
Appl. Earth Obs. Geoinf., 13, 1–12, 2011.
Santoyo-Villa, E., Ovando-Shelley, E., Mooser, F., and Leon-Plata, E.:
Síntesis Geotécnica de la Cuenca del Valle de México, Publicaciones TGC, Mexico City, México, 1st edn., vol. 1, 2005.
Singh, S. K., Reinoso, E., Arroyo, D., Ordaz, M., Cruz-Atienza, V., Pérez-Campos, X., Iglesias, A., and Hjörleifsdóttir, V.: Deadly Intraslab Mexico Earthquake of 19 September 2017 (Mw 7.1): Ground Motion and Damage Pattern in Mexico City, Seismol. Res. Lett., 89, 2193–2203, 2018.
Solano-Rojas, D., Cabral-Cano, E., Hernández-Espriú, A., Wdowinski, S., DeMets, C., Salazar-Tlaczani, L., Falorni, G., and Bohane, A.: La Relación de Subsidencia del Terreno GPS-InSAR y el abatimiento del nivel estático en pozos de la zona Metropolitana de la Ciudad de México,
B. Soc. Geol. Mex., 67, 273–283, 2015.
Short summary
Mexico City, a large megacity with over 21 million inhabitants, is exposed to several hazards, including land subsidence, earthquakes, and flooding. Our data makes it plausible for an earthquake triggering case that temporarily accelerated the subsidence rate in the metropolitan area as a result of the September 2017 earthquakes that affected Mexico City. Furthermore, the triggering effect induced rapid slip along previously developed shallow faults associated with subsidence.
Mexico City, a large megacity with over 21 million inhabitants, is exposed to several hazards,...