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Abstract. Mexico City, a large megacity with over 21 million inhabitants, is exposed to several hazards, in-
cluding land subsidence, earthquakes, and flooding. Hazard assessments for each hazard type is typically treated
separately and usually do not include considerations for any relations among the hazards. Our data makes it plau-
sible for an earthquake triggering case that temporarily accelerated the subsidence rate in the metropolitan area
as a result of theMw 8.2 Tehuantepec and theMw 7.1 Puebla, September 2017 earthquakes that affected Mexico
City. Furthermore, the triggering effect induced rapid slip along previously developed shallow faults associated
with subsidence. These results indicate that any future scenario of land subsidence should consider a potential
triggering effect by large earthquakes. Similarly, earthquake hazard assessments should also consider potential
impact on shallow faulting and fracturing associated with land subsidence.

1 Land subsidence in Mexico City

Mexico City is one of the fastest-subsiding metropolises
in the world, where subsidence rates exceed 360 mm yr−1

(Fig. 1). The subsidence occurs mainly as the response to ag-
gressive groundwater extraction over the past century, caus-
ing progressive damage to the city’s buildings and criti-
cal infrastructure. The subsidence process has been docu-
mented for almost a century (Gayol, 1925; Carrillo, 1948;
Figueroa-Vega, 1984; Ortega et al., 1993). Subsidence rates
vary spatially, mainly due to highly heterogeneous shal-
low stratigraphic sequence beneath the city (Santoyo-Villa
et al., 2005; Auvinet et al., 2017), which responds differ-
entially to groundwater extraction. Highest subsidence rates
occur above thick layers of lacustrine sediments (Cabral-
Cano et al., 2008; Solano-Rojas et al., 2015), whereas non-
subsiding areas correspond to volcanic rocks. Subsidence oc-
curs differentially, particularly between stable volcanic rocks

and highly subsiding sediments, producing significant topo-
graphic elevation changes and causing shallow faulting and
fracturing along well-defined areas of the city (Fig. 2).

Mexico City subsidence has been studied in the past
with conventional topographic methods (e.g., Auvinet et al.,
2017). However, in the past decade subsidence has moni-
tored by advanced satellite geodetic techniques, mainly satel-
lite Interferometric Synthetic Aperture Radar (InSAR) and
GPS (e.g. Cabral et al., 2008; López-Quiroz et al., 2009; Os-
manoğlu et al., 2011; Du et al., 2019). These studies have
routinely detected the highest subsidence rates in the eastern
sector of the city within two areas that correspond to the for-
mer Texcoco and Chalco-Xochimilco lakes (Fig. 1). More-
over, most of the previous studies focused on the city-wide
subsidence signal, which is important for understanding the
city’s aquifer mechanics in response to groundwater extrac-
tion. Both GPS and InSAR measurements indicated limited
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Figure 1. Subsidence velocity map for Mexico City and its municipalities (black lines) derived from the interferometric analysis of Sentinel-
1 SAR data between November 2014 and November 2017. Black lines show Mexico City’s municipalities. The shaded topographic base
layer is taken from Continuo de Elevaciones Mexicano 3.0 © Instituto Nacional de Estadística Geografía e Informática (INEGI).

temporal changes in the subsidence rate throughout the past
two decades with limited seasonal variability.

2 September 2017 earthquakes

Mexico City recently experienced two large earthquakes
that took place only 11 d apart: the Mw 8.2 8 Septem-
ber 2017 with its epicenter offshore Chiapas, and theMw 7.1
19 September 2017 with its epicenter in Puebla (Singh et al.,
2018). The epicenter of the Mw 8.2 earthquake was located
over 700 km away from Mexico City causing only minor im-
pact to the city. However, the epicenter of the Mw 7.1 earth-
quake occurred only ∼ 100 km away from the city, which re-
sulted in severe damaged in the city. Mexico City is very sus-
ceptible to seismic-induced damage, because part of the city
is built over a sedimentary basin with clay rich lacustrine sed-
iments up to 400 m thick (Santoyo-Villa et al., 2006; Auvinet
et al., 2017). This sedimentary unit amplifies seismic energy
causing site effects and making buildings and infrastructures
more vulnerable, depending on their locations within the city.

Local seismic acceleration and site effects have been pre-
viously studied as part of the city building code developed
after the Mw 8.2 1985 earthquake. However, not much at-
tention has been paid to the shallow faulting associated with
land subsidence that has developed on the transitional zones
between the lacustrine deposits and the volcanic structures
outcropping and its role as a potential risk during large earth-
quakes. This situation creates a strong horizontal gradient of
subsidence where faulting and fracturing of the surface is
common and is and addition element when considering the
vulnerability for civil structural damage.

3 Remotely triggered subsidence acceleration

We use satellite-acquired SAR data from the Sentinel-1 satel-
lites provided by the European Space Agency (ESA) through
the Alaska Satellite Facility SAR Data Center repository. The
InSAR process using ISCE software includes multilooking,
topography removal, flattening, filtering, unwrapping, geo-
referencing and re-wrapping steps to obtain a longer-term
baseline for the regional subsidence velocity (Fig. 1).
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Figure 2. Horizontal subsidence gradient map for Mexico City derived from the Sentinel-1 velocity map (Fig. 1). Black lines show Mexico
City’s municipalities. Blue lines show the field mapped subsidence associated faults after CENAPRED (2017). The shaded topographic base
layer is taken from Continuo de Elevaciones Mexicano 3.0 © Instituto Nacional de Estadística Geografía e Informática (INEGI).

Figure 3. Sentinel-1 based wrapped differential interferograms for the Mexico City Metropolitan Area covering (a) 19 July–12 August 2017,
(b) 12 August–5 September 2017, and (c) 5–29 September 2017. Color lookup table for all interferograms depicts 1 cycle = 6.6 cm.
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Figure 4. Subsidence velocity difference obtained by subtracting
the 24 d subsidence vertical velocity field calculated from Fig. 3b
prior to the Mw 8.2 Tehuantepec and the Mw 7.1 Puebla, Septem-
ber 2017 earthquakes vertical velocity field calculated from Fig. 3c.

We examined the effects of both earthquakes on the up
to 360 mm yr−1 subsidence process in Mexico City using
Sentinel-1 derived subsidence. As a baseline for pre-seismic
deformation, we generated two 24 d SAR interferograms
of data acquired between 19 July–12 August (Fig. 3a) and
12 August–5 September (Fig. 3b). These interferograms,
covering the Mexico City Metropolitan area, show roughly
0.5–1π phase change (light blue to purple), which is equiv-
alent to 0.7–1.4 cm surface change in the highly subsiding
regions within the city (Fig. 1). As the observed subsidence
occurred over a period of 24 d, the two interferograms re-
flect subsidence rate of roughly 100–200 mm yr−1. We also
processed a third differential interferogram of data acquired
on 5 and 29 September, which encompasses the integrated
deformation for both the Mw 8.2 and Mw 7.1 earthquakes
(Fig. 3c). This interferogram shows that the previously men-
tioned areas underwent an increase subsidence with much
larger spatial coverage in comparison to the previous inter-
ferograms (Fig. 3a and b) which are 24 and 48 d older. The
change in subsidence velocities (up to∼ 33 mm total vertical
displacement, equivalent to ∼ 38 % rate increase over a 24 d
time window) and areal extent integrated during both seismic
events (Fig. 4) indicates that most of the seismically triggered
subsidence centered on these rapidly subsiding areas.

It is indeed possible that the energy released during these
earthquakes is responsible for a distinctive deformation ve-
locity pattern that is not shared by other sectors of the city
where the underlying lacustrine sediment package is either
thinner or absent.

A closer analysis of this circumstance shows that a large
portion of the reported subsidence associated damage cor-
relates with the presence of preexistent, subsidence-related
faults (CENAPRED, 2017). Moreover, we find evidence of
phase discontinuities in the 5–29 September interferogram,

which also correspond to these areas around the lower slopes
of the Sierra de Santa Catarina.

We conclude that the seismic energy from both earth-
quakes induced a fast soil consolidation and triggered the co-
seismic faulting of the preexistent subsidence related faults.
This circumstance not previously observed 32 years ago dur-
ing the Mw 8.1 19 September 1985 earthquake creates a new
variable that needs to be addressed in future updates to the
building codes and urban zoning considerations in Mexico
City.

4 Conclusions

Our data makes it plausible that the seismic energy released
by theMw 8.2 8 September 2017, and theMw 7.1 19 Septem-
ber 2017 earthquakes induced fast soil consolidation within
a short time span, and triggered slip on the preexisting sub-
sidence associated faults. This effect has not been previ-
ously documented but may be triggered again during an-
other strong earthquake. Future hazard assessments for Mex-
ico City should consider this triggering mechanism for the
assessment and the inclusion shallow faulting for future ur-
ban building code and land use.
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