Journal cover Journal topic
Proceedings of the International Association of Hydrological Sciences An open-access publication for refereed proceedings in hydrology
Journal topic

Journal metrics

CiteScore value: 0.9
CiteScore
0.9
SNIP value: 0.504
SNIP0.504
IPP value: 0.67
IPP0.67
SJR value: 0.296
SJR0.296
Scimago H <br class='widget-line-break'>index value: 9
Scimago H
index
9
h5-index value: 19
h5-index19
Download
Short summary
Developing modelling tools that help to understand the spatial distribution of water resources is a key issue for better management. Ideally, hydrological models which discretise catchment space into sub-catchments should offer better streamflow simulations than lumped models, along with spatially-relevant water resources management solutions. However we demonstrate that those model raise other issues related to the calibration strategy and to the identifiability of the parameters.
Articles | Volume 373
Proc. IAHS, 373, 87–94, 2016
https://doi.org/10.5194/piahs-373-87-2016
Proc. IAHS, 373, 87–94, 2016
https://doi.org/10.5194/piahs-373-87-2016

  12 May 2016

12 May 2016

Spatial variability of the parameters of a semi-distributed hydrological model

Alban de Lavenne et al.

Related authors

Robustness of a parsimonious subsurface drainage model at the French national scale
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-168,https://doi.org/10.5194/hess-2021-168, 2021
Preprint under review for HESS
Short summary
Technical Note – RAT: a Robustness Assessment Test for calibrated and uncalibrated hydrological models
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-147,https://doi.org/10.5194/hess-2021-147, 2021
Preprint under review for HESS
Short summary
Behind the scenes of streamflow model performance
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021,https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs – a conceptual approach
Manon Cassagnole, Maria-Helena Ramos, Ioanna Zalachori, Guillaume Thirel, Rémy Garçon, Joël Gailhard, and Thomas Ouillon
Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021,https://doi.org/10.5194/hess-25-1033-2021, 2021
Technical note: PMR – a proxy metric to assess hydrological model robustness in a changing climate
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-58,https://doi.org/10.5194/hess-2021-58, 2021
Preprint under review for HESS

Cited articles

Andersen, J., Refsgaard, J. C., and Jensen, K. H.: Distributed hydrological modelling of the Senegal River Basin – model construction and validation, J. Hydrol., 247, 200–214, https://doi.org/10.1016/S0022-1694(01)00384-5, 2001.
Andréassian, V., Parent, E., and Michel, C.: A distribution-free test to detect gradual changes in watershed behavior, Water Resour. Res., 39, 1252, https://doi.org/10.1029/2003WR002081, 2003.
Bentura, P. L. and Michel, C.: Flood routing in a wide channel with a quadratic lag-and-route method, Hydrolog. Sci. J., 42, 169–189, https://doi.org/10.1080/02626669709492018, 1997.
Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change?, J. Hydrol., 476, 410–425, https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R. A.: A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, J. Hydrol., 310, 28–61, https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.
Publications Copernicus
Download
Short summary
Developing modelling tools that help to understand the spatial distribution of water resources is a key issue for better management. Ideally, hydrological models which discretise catchment space into sub-catchments should offer better streamflow simulations than lumped models, along with spatially-relevant water resources management solutions. However we demonstrate that those model raise other issues related to the calibration strategy and to the identifiability of the parameters.
Citation