Articles | Volume 372
https://doi.org/10.5194/piahs-372-227-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-372-227-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Visualization of three dimensional earth fissures in geological structure
College of Resources Environment and Tourism, Capital Normal University, Beijing, China
Laboratory Cultivation Base of environment process and digital simulation, Beijing, China
J. Yu
Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources, Jiangsu, China
Y. Liu
College of Resources Environment and Tourism, Capital Normal University, Beijing, China
Laboratory Cultivation Base of environment process and digital simulation, Beijing, China
H. Gong
College of Resources Environment and Tourism, Capital Normal University, Beijing, China
Laboratory Cultivation Base of environment process and digital simulation, Beijing, China
Y. Chen
Land and Water Laboratory, Canberra, Australia
B. Chen
College of Resources Environment and Tourism, Capital Normal University, Beijing, China
Laboratory Cultivation Base of environment process and digital simulation, Beijing, China
Related authors
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Jiahui Zhou, Lin Zhu, Huili Gong, Huijun Li, Liping Zheng, Rui Cheng, and Hanrui Sun
Proc. IAHS, 382, 391–396, https://doi.org/10.5194/piahs-382-391-2020, https://doi.org/10.5194/piahs-382-391-2020, 2020
Short summary
Short summary
Land subsidence is a serious geo-hazard in Beijing Plain, which has threatened the safety of the operation of the metropolis. This study derived the vertical and the East-West deformation, and the spatial variation and the impact factors of the vertical and the East-West deformation were analyzed. It found that the extraction of groundwater is the dominant factor affecting the spatial distribution of the vertical displacement, while the dominant factor of East-West deformation is not obvious.
Di Zhou, Jie Yu, Lin Zhu, Yanbing Wang, Jing Zhang, Shuai Jiao, and Ren Shu Chen
Proc. IAHS, 382, 249–253, https://doi.org/10.5194/piahs-382-249-2020, https://doi.org/10.5194/piahs-382-249-2020, 2020
Short summary
Short summary
To overcome the problem that layover scatterers with no amplitude stability and spatial coherence are lead to reliability insufficient and accuracy reduction in monitoring urban land subsidence, we applied the Fast Fourier Transform to convert Persistent Scatterers to frequency domain during the PS-InSAR identification process. The method could identify and separate single and layover scatterers, reduced the effect of layover scatterers, improved the accuracy of urban land subsidence monitoring.
Huijun Li, Lin Zhu, Huili Gong, Hanrui Sun, and Jie Yu
Proc. IAHS, 382, 505–510, https://doi.org/10.5194/piahs-382-505-2020, https://doi.org/10.5194/piahs-382-505-2020, 2020
Lin Guo, Huili Gong, Xiaojuan Li, Lin Zhu, Wei Lv, and Mingyuan Lyu
Proc. IAHS, 382, 291–296, https://doi.org/10.5194/piahs-382-291-2020, https://doi.org/10.5194/piahs-382-291-2020, 2020
Yueting Li, Matteo Frigo, Yan Zhang, Lin Zhu, Massimiliano Ferronato, Carlo Janna, Xulong Gong, Jun Yu, Pietro Teatini, and Shujun Ye
Proc. IAHS, 382, 511–514, https://doi.org/10.5194/piahs-382-511-2020, https://doi.org/10.5194/piahs-382-511-2020, 2020
Luo Yong, Zhao Long, Zhu Lin, Tian Fang, Lei Kunchao, and Sun Aihua
Proc. IAHS, 382, 715–719, https://doi.org/10.5194/piahs-382-715-2020, https://doi.org/10.5194/piahs-382-715-2020, 2020
Short summary
Short summary
This article established a groundwater–subsidence model in a typical land subsidence region and classified an early land subsidence warning zone based on the results from the model. If the pumping of groundwater from the second and fourth aquifers was reduced by 50 % and pumping from the third aquifer was reduced by 60 %, the early warning level for land subsidence would be greatly reduced and would meet the requirements for land subsidence control.
S. Jiao, J. Yu, Y. Wang, L. Zhu, and Q. Zhou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 691–698, https://doi.org/10.5194/isprs-archives-XLII-3-691-2018, https://doi.org/10.5194/isprs-archives-XLII-3-691-2018, 2018
Lin Zhu, Huili Gong, Zhenxue Dai, Gaoxuan Guo, and Pietro Teatini
Hydrol. Earth Syst. Sci., 21, 721–733, https://doi.org/10.5194/hess-21-721-2017, https://doi.org/10.5194/hess-21-721-2017, 2017
Short summary
Short summary
We developed a method to characterize the distribution and variance of the hydraulic conductivity k in a multiple-zone alluvial fan by fusing multiple-source data. Consistently with the scales of the sedimentary transport energy, the k variance of the various facies decreases from the upper to the lower portion along the flow direction. The 3-D distribution of k is consistent with that of the facies. The potentialities of the proposed approach are tested on the Chaobai River megafan, China.
F. Tian, J.-R. Liu, Y. Luo, L. Zhu, Y. Yang, and Y. Zhou
Proc. IAHS, 372, 49–52, https://doi.org/10.5194/piahs-372-49-2015, https://doi.org/10.5194/piahs-372-49-2015, 2015
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Jiahui Zhou, Lin Zhu, Huili Gong, Huijun Li, Liping Zheng, Rui Cheng, and Hanrui Sun
Proc. IAHS, 382, 391–396, https://doi.org/10.5194/piahs-382-391-2020, https://doi.org/10.5194/piahs-382-391-2020, 2020
Short summary
Short summary
Land subsidence is a serious geo-hazard in Beijing Plain, which has threatened the safety of the operation of the metropolis. This study derived the vertical and the East-West deformation, and the spatial variation and the impact factors of the vertical and the East-West deformation were analyzed. It found that the extraction of groundwater is the dominant factor affecting the spatial distribution of the vertical displacement, while the dominant factor of East-West deformation is not obvious.
Di Zhou, Jie Yu, Lin Zhu, Yanbing Wang, Jing Zhang, Shuai Jiao, and Ren Shu Chen
Proc. IAHS, 382, 249–253, https://doi.org/10.5194/piahs-382-249-2020, https://doi.org/10.5194/piahs-382-249-2020, 2020
Short summary
Short summary
To overcome the problem that layover scatterers with no amplitude stability and spatial coherence are lead to reliability insufficient and accuracy reduction in monitoring urban land subsidence, we applied the Fast Fourier Transform to convert Persistent Scatterers to frequency domain during the PS-InSAR identification process. The method could identify and separate single and layover scatterers, reduced the effect of layover scatterers, improved the accuracy of urban land subsidence monitoring.
Huijun Li, Lin Zhu, Huili Gong, Hanrui Sun, and Jie Yu
Proc. IAHS, 382, 505–510, https://doi.org/10.5194/piahs-382-505-2020, https://doi.org/10.5194/piahs-382-505-2020, 2020
Lin Guo, Huili Gong, Xiaojuan Li, Lin Zhu, Wei Lv, and Mingyuan Lyu
Proc. IAHS, 382, 291–296, https://doi.org/10.5194/piahs-382-291-2020, https://doi.org/10.5194/piahs-382-291-2020, 2020
Yueting Li, Matteo Frigo, Yan Zhang, Lin Zhu, Massimiliano Ferronato, Carlo Janna, Xulong Gong, Jun Yu, Pietro Teatini, and Shujun Ye
Proc. IAHS, 382, 511–514, https://doi.org/10.5194/piahs-382-511-2020, https://doi.org/10.5194/piahs-382-511-2020, 2020
Luo Yong, Zhao Long, Zhu Lin, Tian Fang, Lei Kunchao, and Sun Aihua
Proc. IAHS, 382, 715–719, https://doi.org/10.5194/piahs-382-715-2020, https://doi.org/10.5194/piahs-382-715-2020, 2020
Short summary
Short summary
This article established a groundwater–subsidence model in a typical land subsidence region and classified an early land subsidence warning zone based on the results from the model. If the pumping of groundwater from the second and fourth aquifers was reduced by 50 % and pumping from the third aquifer was reduced by 60 %, the early warning level for land subsidence would be greatly reduced and would meet the requirements for land subsidence control.
S. Jiao, J. Yu, Y. Wang, L. Zhu, and Q. Zhou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 691–698, https://doi.org/10.5194/isprs-archives-XLII-3-691-2018, https://doi.org/10.5194/isprs-archives-XLII-3-691-2018, 2018
Lin Zhu, Huili Gong, Zhenxue Dai, Gaoxuan Guo, and Pietro Teatini
Hydrol. Earth Syst. Sci., 21, 721–733, https://doi.org/10.5194/hess-21-721-2017, https://doi.org/10.5194/hess-21-721-2017, 2017
Short summary
Short summary
We developed a method to characterize the distribution and variance of the hydraulic conductivity k in a multiple-zone alluvial fan by fusing multiple-source data. Consistently with the scales of the sedimentary transport energy, the k variance of the various facies decreases from the upper to the lower portion along the flow direction. The 3-D distribution of k is consistent with that of the facies. The potentialities of the proposed approach are tested on the Chaobai River megafan, China.
S. Ye, Y. Wang, J. Wu, P. Teatini, J. Yu, X. Gong, and G. Wang
Proc. IAHS, 372, 249–253, https://doi.org/10.5194/piahs-372-249-2015, https://doi.org/10.5194/piahs-372-249-2015, 2015
M. L. Gao, H. L. Gong, B. B. Chen, C. F. Zhou, K. S. Liu, and M. Shi
Proc. IAHS, 372, 347–349, https://doi.org/10.5194/piahs-372-347-2015, https://doi.org/10.5194/piahs-372-347-2015, 2015
F. Tian, J.-R. Liu, Y. Luo, L. Zhu, Y. Yang, and Y. Zhou
Proc. IAHS, 372, 49–52, https://doi.org/10.5194/piahs-372-49-2015, https://doi.org/10.5194/piahs-372-49-2015, 2015
Cited articles
Li, B., Zhang, J., Xu, Y., Lv, Y., Zhang, L., Wang, W., Yan, F., Xu, M., Xing, C., and Wang, S.: Study on modeling and 3-D-visualization of ground fissures' spatial curved surfaces, Image and Signal Processing (CISP), 6, 2838–2844, 2010.
Li, C.-C., Wang, B.-S., and Xue, H.-Z.: Coal geological body three-dimensional modeling and cutting based on GTP, Journal of China Coal Society, 33, 1268–1271, 2008 (in Chinese).
Wu, L.: Topological relations embodied in a generalized tri-prism (GTP) model for a 3-D geosciences modeling system, Comput. Geosci., 30, 405–418, 2004.
Yu, J., Wang, X. M., Su, X. S., and Yu, Q.: The mechanism analysis on ground fissure disaster formation in Suzhou-Wuxi-Changzhou area, Journal of Jilin University, Earth Science Edition, 34, 236–241, 2004 (in Chinese).
Yu, J., Su, X., Zhu, L., Duan, F.-Z., Pan, Y., Gao, L., and Wu, S.-L.: Research on 3-D visualized strata model virtual reality system of land subsidence in Suzhou-Wuxi-Changzhou area, 8th International Symposium on Land Subsidence, 17–22 October 2010, Queretaro, Mexico, 339, 108–113, 2010
Yu, J., Zhu, J. Q., Gong, X. L., and Yang, Y.: The potential mechanisms of Yingguoan earth fissure using 3D seismic exploration data, 20th International Congress on Modelling and Simulation, 1–6 December 2013, Adelaide, Australia, 2751–2757, 2013.
Voss, C.: Editor's Message: Scientific visualization in hydrogeology, Hydrogeol. J., 7, 153–154, 1999.
Zhu, L., Su, X., Lin, X., Gong, H., and Yu, J.: Application of VR-GIS in studying ground fracture in the western region of Wuxi area, Journal of Jilin University, Earth Science Edition, 2, 317–321, 2009 (in Chinese).
Short summary
The earth fissures of geological structure are visualized in three dimensional domains through a volumetric modeling method. The topological relations between TIN, triangular prism and lines are constructed for further spatial calculation. This method can facilitate the mechanism for studying fissures.
The earth fissures of geological structure are visualized in three dimensional domains through a...