Articles | Volume 371
https://doi.org/10.5194/piahs-371-59-2015
https://doi.org/10.5194/piahs-371-59-2015
12 Jun 2015
 | 12 Jun 2015

Ability of a land surface model to predict climate induced changes in northern Russian river runoff during the 21st century

O. N. Nasonova, Y. M. Gusev, E. M. Volodin, and E. E. Kovalev

Related authors

Snow cover duration trends observed at sites and predicted by multiple models
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020,https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018,https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Large-basin hydrological response to climate model outputs: uncertainty caused by internal atmospheric variability
A. Gelfan, V. A. Semenov, E. Gusev, Y. Motovilov, O. Nasonova, I. Krylenko, and E. Kovalev
Hydrol. Earth Syst. Sci., 19, 2737–2754, https://doi.org/10.5194/hess-19-2737-2015,https://doi.org/10.5194/hess-19-2737-2015, 2015
Short summary
Scenario forecasting changes in the water balance components of the Olenek and Iindigirka river basins due to possible climate change
Ye. M. Gusev, O. N. Nasonova, L. Ya. Dzhogan, and E. E. Kovalev
Proc. IAHS, 371, 13–15, https://doi.org/10.5194/piahs-371-13-2015,https://doi.org/10.5194/piahs-371-13-2015, 2015
Short summary

Cited articles

Arora, V., Seglenieks, F., Kouwen, N., and Soulis, E.: Scaling aspects of river flow routing, Hydrol. Process., 15, 461–477, 2001.
Arora, V. K. and Boer, J.: Effects of simulated climate change on the hydrology of major river basins, J. Geophys. Res., 106, 3335–3348, 2001.
Dirmeyer, P., Gao, X., and Oki, T.: The Second Global Soil Wetness Project. Science and Implementation Plan, IGPO Publication Series, International GEWEX Project Office, Silver Spring, 37, 1–75, 2002.
Duan, Q., Sorooshian, S., and Gupta, V. K.: Effective and efficient global optimization for conceptual rainfall runoff models, Water Resour. Res., 28, 1015–1031, 1992.
Gosling, S. N., Taylor, R. G., Arnell, N. W., and Todd, M. C.: A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models, Hydrol. Earth Syst. Sci., 15, 279–294, https://doi.org/10.5194/hess-15-279-2011, 2011.
Download
Short summary
The land surface model SWAP was found to be robust and can be applied for climate change studies. The river runoff projections up to 2100 were calculated for two greenhouse gas emission scenarios: RCP8.5 and RCP4.5. Scatter among SWAP’s projections due to application of different post-processing techniques for correcting biases in meteorological forcing data did not exceed 8%, while differences between changes in runoff projected by two models are much larger.