Articles | Volume 371
https://doi.org/10.5194/piahs-371-3-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-371-3-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Implication of calibration period on modelling climate change impact on future runoff
CSIRO Land and Water Flagship, G.P.O. Box 1666, Canberra, ACT 2601, Australia
CSIRO Land and Water Flagship, G.P.O. Box 1666, Canberra, ACT 2601, Australia
J. Vaze
CSIRO Land and Water Flagship, G.P.O. Box 1666, Canberra, ACT 2601, Australia
Related authors
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Nicholas J. Potter, Francis H. S. Chiew, Stephen P. Charles, Guobin Fu, Hongxing Zheng, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2963–2979, https://doi.org/10.5194/hess-24-2963-2020, https://doi.org/10.5194/hess-24-2963-2020, 2020
Short summary
Short summary
There is a growing need for information about possible changes to water resource availability in the future due to climate change. Large-scale outputs from global climate models need to be translated to finer-resolution spatial scales before hydrological modelling. Biases in this downscaled data often need to be corrected. We show that usual bias correction methods can retain residual biases in multi-day occurrences of rainfall, which can result in biases in modelled runoff.
Stephen P. Charles, Francis H. S. Chiew, Nicholas J. Potter, Hongxing Zheng, Guobin Fu, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2981–2997, https://doi.org/10.5194/hess-24-2981-2020, https://doi.org/10.5194/hess-24-2981-2020, 2020
Short summary
Short summary
This paper assesses the suitability of bias-corrected (BC) WRF daily rainfall across the state of Victoria, Australia, for input to hydrological models to determine plausible climate change impacts on runoff. It compares rainfall and runoff changes using BC WRF with those obtained from empirical scaling (ES) using raw WRF changes. It concludes that BC-derived changes are more plausible than ES-derived changes but that remaining biases in BC WRF daily data add uncertainty to runoff projections.
J. Teng, N. J. Potter, F. H. S. Chiew, L. Zhang, B. Wang, J. Vaze, and J. P. Evans
Hydrol. Earth Syst. Sci., 19, 711–728, https://doi.org/10.5194/hess-19-711-2015, https://doi.org/10.5194/hess-19-711-2015, 2015
Short summary
Short summary
This paper assesses four bias correction methods applied to RCM-simulated precipitation, and their follow-on impact on modelled runoff. The differences between the methods are small, mainly due to the substantial corrections required and inconsistent errors over time. The methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Furthermore, bias correction can introduce additional uncertainty to change signals in modelled runoff.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Linan Guo, Hongxing Zheng, Yanhong Wu, Lanxin Fan, Mengxuan Wen, Junsheng Li, Fangfang Zhang, Liping Zhu, and Bing Zhang
Earth Syst. Sci. Data, 14, 3411–3422, https://doi.org/10.5194/essd-14-3411-2022, https://doi.org/10.5194/essd-14-3411-2022, 2022
Short summary
Short summary
Lake surface water temperature (LSWT) is a critical physical property of the aquatic ecosystem and an indicator of climate change. By combining the strengths of satellites and models, we produced an integrated dataset on daily LSWT of 160 large lakes across the Tibetan Plateau (TP) for the period 1978–2017. LSWT increased significantly at a rate of 0.01–0.47° per 10 years. The dataset can contribute to research on water and heat balance changes and their ecological effects in the TP.
Nicholas J. Potter, Francis H. S. Chiew, Stephen P. Charles, Guobin Fu, Hongxing Zheng, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2963–2979, https://doi.org/10.5194/hess-24-2963-2020, https://doi.org/10.5194/hess-24-2963-2020, 2020
Short summary
Short summary
There is a growing need for information about possible changes to water resource availability in the future due to climate change. Large-scale outputs from global climate models need to be translated to finer-resolution spatial scales before hydrological modelling. Biases in this downscaled data often need to be corrected. We show that usual bias correction methods can retain residual biases in multi-day occurrences of rainfall, which can result in biases in modelled runoff.
Stephen P. Charles, Francis H. S. Chiew, Nicholas J. Potter, Hongxing Zheng, Guobin Fu, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2981–2997, https://doi.org/10.5194/hess-24-2981-2020, https://doi.org/10.5194/hess-24-2981-2020, 2020
Short summary
Short summary
This paper assesses the suitability of bias-corrected (BC) WRF daily rainfall across the state of Victoria, Australia, for input to hydrological models to determine plausible climate change impacts on runoff. It compares rainfall and runoff changes using BC WRF with those obtained from empirical scaling (ES) using raw WRF changes. It concludes that BC-derived changes are more plausible than ES-derived changes but that remaining biases in BC WRF daily data add uncertainty to runoff projections.
Cherry May R. Mateo, Dai Yamazaki, Hyungjun Kim, Adisorn Champathong, Jai Vaze, and Taikan Oki
Hydrol. Earth Syst. Sci., 21, 5143–5163, https://doi.org/10.5194/hess-21-5143-2017, https://doi.org/10.5194/hess-21-5143-2017, 2017
Short summary
Short summary
Providing large-scale (regional or global) simulation of floods at fine spatial resolution is difficult due to computational constraints but is necessary to provide consistent estimates of hazards, especially in data-scarce regions. We assessed the capability of an advanced global-scale river model to simulate an extreme flood at fine resolution. We found that when multiple flow connections in rivers are represented, the model can provide reliable fine-resolution predictions of flood inundation.
Z. Luo, E. Wang, H. Zheng, J. A. Baldock, O. J. Sun, and Q. Shao
Biogeosciences, 12, 4373–4383, https://doi.org/10.5194/bg-12-4373-2015, https://doi.org/10.5194/bg-12-4373-2015, 2015
Short summary
Short summary
Soil carbon models are primary tools for projecting soil carbon balance under changing environment and management. This study shows that the carbon model produces divergent projections but accurate reproduction of measured soil carbon. This projection uncertainty is mainly due to an insufficient understanding of microbial processes and soil carbon composition. Climate conditions and land management in terms of carbon input also have significant effects.
J. D. Hughes and J. Vaze
Proc. IAHS, 371, 7–12, https://doi.org/10.5194/piahs-371-7-2015, https://doi.org/10.5194/piahs-371-7-2015, 2015
J. Vaze, Y. Q. Zhang, and L. Zhang
Proc. IAHS, 371, 215–221, https://doi.org/10.5194/piahs-371-215-2015, https://doi.org/10.5194/piahs-371-215-2015, 2015
Short summary
Short summary
Most of the forested headwater catchments are an important source of water supply in many parts of the world. A prime example is southeast Australia where forests supply major river systems and towns and cities with water. It is critical for an informed and adaptive water resource management to understand changes in streamflow caused by vegetation changes in these headwater forest catchments. Natural disturbances such as bushfires and anthropogenic activities like forestation, deforestation, or
J. Teng, N. J. Potter, F. H. S. Chiew, L. Zhang, B. Wang, J. Vaze, and J. P. Evans
Hydrol. Earth Syst. Sci., 19, 711–728, https://doi.org/10.5194/hess-19-711-2015, https://doi.org/10.5194/hess-19-711-2015, 2015
Short summary
Short summary
This paper assesses four bias correction methods applied to RCM-simulated precipitation, and their follow-on impact on modelled runoff. The differences between the methods are small, mainly due to the substantial corrections required and inconsistent errors over time. The methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Furthermore, bias correction can introduce additional uncertainty to change signals in modelled runoff.
Y. Zhou, Y. Zhang, J. Vaze, P. Lane, and S. Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-4397-2013, https://doi.org/10.5194/hessd-10-4397-2013, 2013
Revised manuscript not accepted
Cited articles
Chiew, F. H. S.: Estimation of rainfall elasticity of streamflow in Australia, Hydrol. Sci. J., 51, 613–625, https://doi.org/10.1623/hysj.51.4.613, 2006.
Chiew, F. H. S., Peel, M. C., and Western, A. W.: Application and testing of the simple rainfall-runoff model SIMHYD, in: Mathematical Models of Small Watershed Hydrology and Applications, edited by: Singh, V. P. and Frevert, D. K., Water Resources Publication, Littleton, Colorado, 335–367, 2002.
Chiew, F. H. S., Teng, J., Vaze, J., Post, D. A., Perraud, J.-M., Kirono, D. G. C., and Viney, N. R.: Estimating climate change impact on runoff across south-east Australia: method, results and implications of modelling method, Water Resour. Res., 45, W10414, https://doi.org/10.1029/2008WR007338, 2009.
Chiew, F. H. S., Potter, N. J., Vaze, J., Petheram, C., Zhang, L., and Post, D. A.: Observed hydrologic non-stationarity in far south-eastern Australia: implications and future modelling predictions, Stochast. Environm. Res. Risk Assess., 28, 3–15, https://doi.org/10.1007/s00477-013-0755-5, 2014.
Coron, L., Andreassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., and Hendrickx, F.: Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments, Water Resour. Res., 48, W05552, https://doi.org/10.1029/2011WR011721, 2012.
Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R.: Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environ. Modell. Softw., 16, 309–330, 2001.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, 1, A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Perrin, C., Michel, C., and Andreassian, V.: Improvement of a parsimonious model for streamflow simulations, J. Hydrol., 279, 275–289, 2003.
Post, D. A., Timbal, B., Chiew, F. H. S., Hendon, H. H., Nguyen, H., and Moran, R.: Decrease in southeastern Australian water availability linked to ongoing Hadley cell expansion, Earth's Future, 2, 231–238, https://doi.org/10.1002/2013EF000194, 2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Teng, J., Vaze, J., Chiew, F. H. S., Wang, B., and Perraud, J.-M.: Estimating the relative uncertainties sourced from GCMs and hydrological models in modelling climate change impact on runoff, J. Hydrometeorol., 13, 122–139, https://doi.org/10.1175/JHM-D-11-058.1, 2012.
Vaze, J., Post, D. A., Chiew, F. H. S., Perraud, J.-M., Viney, N., and Teng, J.: Climate non-stationarity – validity of calibrated rainfall-runoff models for use in climate change studies, J. Hydrol., 394, 447–457, https://doi.org/10.1016/j.jhydrol.2010.09.018, 2010.
Short summary
This paper explores the consideration and implication of calibration period on the modelled climate change impact on future runoff.
This paper explores the consideration and implication of calibration period on the modelled...