Articles | Volume 386
https://doi.org/10.5194/piahs-386-203-2024
https://doi.org/10.5194/piahs-386-203-2024
Post-conference publication
 | 
19 Apr 2024
Post-conference publication |  | 19 Apr 2024

Satellite and UAV derived seasonal vegetative roughness estimation for flood analysis

Andre Araujo Fortes, Masakazu Hashimoto, Keiko Udo, and Ken Ichikawa

Cited articles

Aberle, J. and Järvelä, J.: Flow resistance of emergent rigid and flexible floodplain vegetation, J. Hydraul. Res., 51, 33–45, https://doi.org/10.1080/00221686.2012.754795, 2013. 
Bates, P.: Remote sensing and flood inundation modelling, Hydrol. Process., 18, 2593–2597, https://doi.org/10.1002/hyp.5649, 2004. 
Box, W., Järvelä, J., and Västilä, K.: Flow resistance of floodplain vegetation mixtures for modelling river flows, J. Hydrol., 601, 126593–126604, https://doi.org/10.1016/J.JHYDROL.2021.126593, 2021. 
Coppo Frias, M., Liu, S., Mo, X., Nielsen, K., Ranndal, H., Jiang, L., Ma, J., and Bauer-Gottwein, P.: River hydraulic modeling with ICESat-2 land and water surface elevation, Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, 2023. 
Ebrahimi, N. G., Fathi-Moghadam, M., Kashefipour, S. M., Saneie, M., and Ebrahimi, K.: Effects of Flow and Vegetation States on River Roughness Coefficients, J. Appl. Sci., 8, 2118–2123, 2008. 
Download
Short summary
This research was motivated by the necessity to achieve better efficiency of hydraulic models. By using an automated calculation routine for the roughness in the vegetated areas, we could produce results with higher precision, reducing the error when comparing to the traditional method of roughness setting. The research shows that, using machine learning, and remote sensing data, the necessary vegetation parameters can be obtained in a broad area, enabling the application of the method.