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Abstract. One of the purposes of river management is the disaster protection of the nearby population. The
effect of riparian vegetation on hydraulic resistance and conveyance capacity makes it a vital parameter for this
purpose. With remote sensing techniques, vegetation information can be estimated. This paper’s objective is to
combine UAV and satellite imagery to obtain vegetation parameters with moderate resolution for hydraulic
modeling, and to assess the seasonal effect of the vegetation on the Manning coefficient. Typhoon Hagibis
was simulated with a 2D hydraulic model with a dynamic vegetative roughness estimation routine. Results
demonstrate that this method achieved less error than the traditional static roughness value method of hydraulic
modeling. The seasonal effect of the vegetation on the roughness was shown by a relationship between the
percentage of vegetation cover and the average Manning in the stretch.

1 Background

On 12 October 2019, typhoon Hagibis hit Japan causing ex-
treme rainfall and flooding several rivers across the territory
(Kazama et al., 2021). River management is tasked to provide
the safety of nearby populations from floods, thus accurate
predictions of these events and mitigation measures must be
made. Hydraulic models are used to provide information on
flood risk and vulnerability, but many input data are needed,
such as topography, flow data, and the Manning roughness
coefficient, to provide accurate results (Bates, 2004).

Vegetation is the dominant factor in determining the
roughness value (Ebrahimi et al., 2008), and their physi-
cal parameters are the primary determinants (Nikora et al.,
2008). Studies show that plant density impacts the roughness
while the vegetation is emergent (Aberle and Järvelä, 2013),
and the ratio of the flow depth to the canopy height describes
the roughness in the submerged state (Nikora et al., 2008). A
good descriptor of plant density is the leaf area index (LAI)
(Jalonen et al., 2013), which is defined as the total one-sided
leaf area over ground unit area.

With vegetation mostly located in the floodplains, it is
a common practice to adopt constant roughness values

for channel and floodplains. This practice requires a time-
consuming process of trial and error to obtain accurate re-
sults. According to Ebrahimi et al. (2008), the adoption of a
dynamic Manning value varying with changes in flow and
vegetation conditions can obtain better results than static
Manning approaches. In addition, with seasonal changes in
the vegetation parameters, variations in the hydraulic resis-
tance also occur. Therefore, studies that combine the appli-
cation of vegetation parameters on hydraulic models in real
scenarios are very important.

With advancements in remote sensing techniques, obtain-
ing vegetation physical parameters has become cheaper and
less time-consuming (Fortes et al., 2022). The use of un-
manned aerial vehicles (UAVs) equipped with cameras eased
the identification and extraction of features such as vegeta-
tion height and their variation with the passing of seasons
(van Iersel et al., 2018). Satellites have the advantage of more
temporal frequency, covering a larger area, and with emis-
sion of more spectral bands, many indices can be obtained,
although with less resolution than UAVs. Vegetation param-
eters can also be obtained from these sources (Gokool et al.,
2022).
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Figure 1. Study area, showing the location of the catchment and the
location of the 2 km stretch, where the hydraulic model was applied.

Besides vegetation parameters, new technologies have al-
lowed the acquisition of high-resolution spatially distributed
water levels, such as the ICESat-2 satellite mission (Coppo
Frias et al., 2023) and UAVs equipped with radar altimetry
(Jiang et al., 2020), which can be useful in hydraulic model-
ing for calibration and validation.

The objective of this study is to combine UAV and satellite
imagery to obtain LAI and vegetation height with moderate
resolution for hydraulic modeling, with dynamic vegetative
roughness calculation, and to assess the seasonal effect of
the vegetation on the roughness parameter.

2 Study area

The hydraulic model was applied in a 2 km stretch of the
Nanakita river, in the Miyagi prefecture of Japan. The river
has 45 km of total length and, catchment area of 229 km2.
The mean annual discharge is 10 m3 s−1 and the 100-year re-
turn period discharge is 1650 m3 s−1 (Viet et al., 2006). Ac-
cording to Pilailar et al. (2003), the bed slope of Nanakita
river is about 0.0016 in the upstream and 0.0003 in the down-
stream part of the river. Rivers in Japan are classified as
class A or class B rivers, depending on their size. Class A
rivers are managed by the national government and class B
rivers, like Nanakita river, are managed by the local prefec-
tures. UAV flights took place in the 2 km stretch in Septem-
ber 2019, and then monthly from April 2020 to March 2021.
Figure 1 shows the catchment location and the location of the
2 km stretch of the river.

The vegetation in the stretch is mostly comprised of shrubs
and tall grass species. The predominant population is Puer-
aria montana var. Lobata (Kudzu), Miscanthus sinensis,
Phragmites australis, and Solidago canadensis.

During typhoon Hagibis, no overtopping of the flood con-
trol structures occurred in the 2 km stretch.

3 Methodology

To recreate the typhoon Hagibis flood event in the stretch,
three 2D-hydraulic simulations were performed. One simula-
tion using constant Manning values, from here referred to as
Static Manning Simulation (SMS), and two simulations with
dynamic Manning calculation. In the dynamic set, one simu-
lation calculated the Manning value only in submerged vege-
tation scenario, with the method used in Fortes et al. (2022),
from here referred to as Partial Dynamic Manning Simula-
tion (PDMS), and the other calculated the Manning value
for submerged and emergent vegetation scenarios, referred
as Full Dynamic Manning Simulation (FDMS).

After the event recreation, the effect of seasonal variation
of the vegetation on Manning was assessed by simulating
the same event with vegetation conditions in each season.
The UAV observation and sentinel-2 images from May 2020,
November 2020, and January 2021 were used to represent
spring, autumn, and winter, respectively. The recreation of
the event used the observation from September 2019, rep-
resenting the summer season. To perform the seasonal as-
sessment, the FDMS model was used. The input data for the
hydraulic simulation of each season was the same, differing
only in the LAI and vegetation height values and distribution.

The upstream discharge used in the hydraulic models was
obtained from Fortes et al. (2022), using a hydrologic model,
covered in Sect. 3.1. Section 3.2 covers the hydraulic model
used for the SMS and the topography used. The vegetative
Manning algorithms are introduced in Sect. 3.3, and Sect. 3.4
explains the method to obtain the vegetation parameters.

3.1 Hydrologic simulation

The input discharge was obtained by running a hydrologic
model, the Rainfall-Runoff Inundation (RRI) model, which
is capable of simulating both rainfall-runoff and inundation
phenomena (Sayama et al., 2012). It uses continuity and mo-
mentum equations as governing equations.

The input data was the catchment digital elevation
model (DEM), obtained from MERIT Hydro (Yamazaki
et al., 2019) with 90 m resolution, rainfall data from the
radar/raingauge-analyzed (RA) precipitation (Ishizaki and
Matsuyama, 2018) from 12–14 October 2019, land cover ob-
tained from MLIT National Land Data Information (2014)
with 100 m resolution and the Manning data, which was set
0.04 in river cells and in the slope cells, 0.5 for vegetation,
0.3 for urban areas and 0.04 in water bodies.

The outputs are the inundation map, water level, and dis-
charge. The validation was obtained by comparing the simu-
lated and observed water depth at the five water level gauge
stations shown in Fig. 1.
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3.2 Hydraulic model

A 2D hydraulic model was used for the event recreation in
the stretch (Hashimoto et al., 2018). The model uses con-
tinuity and momentum equations as governing equations.
The model’s input data are the topography, the upstream dis-
charge, and the Manning values. The outputs are the inunda-
tion and water level. The hydraulic model inputs as boundary
conditions the outlet cells and their slope.

The computational domain for the hydraulic model was
the 2 km UAV observed stretch of the river, shown in Fig. 1.
The DEM used as topography input in all hydraulic sim-
ulations was constructed from 21 cross-sections provided
by Miyagi prefecture. The final resolution of the DEM was
10 m. The Manning setting for the SMS was 0.022 for
the channel and 0.038 for floodplains, as recommended by
Miyagi prefecture. To distinguish channel and floodplain, a
simulation using the average annual discharge of the river
was performed. This method was chosen rather than mak-
ing this classification from the topography because setting a
height threshold to separate river and floodplain areas would
not consider the slope progression of the river. Using the
mean annual discharge was preferred because pre-calibrated
roughness values for the river channel were available and
could be used to observe where the water surface would ac-
commodate in the stretch.

Outlet cells were selected as the boundary condition. The
outlet discharge was calculated with Manning equation, and
the slope was set as 0.0002, which is close to the average
slope of the lower reaches of the river.

All models were validated by comparing simulated and
observed water level profiles in 5 sections. The height was
obtained by observation of photos taken during the event, the
height of objects in the photographs was used to estimate the
height difference between the top of the embankments and
the watermarks.

3.3 Dynamic Manning routine

While the FDMS introduces the Manning calculation in
the emergent state of the floodplain vegetation, the PDMS
was performed using the algorithm developed by Fortes et
al. (2022), which used only the submerged state to calculate
the Manning values cellwise, blocking the water flow at the
vegetated cells while in emergent state. The reason for con-
sidering using the PDMS is due to the coefficients needed by
the FDMS, which are not always available.

3.3.1 Emergent vegetation state

The vegetation LAI was used for this state. The Darcy-
Weisbach friction factor at each cell was calculated from
Eq. (1), proposed by Järvelä (2004).

f = 4CDx LAI
(

u

ux

)x (
h

hveg

)
. (1)

where f is the friction factor, CDx is the vegetation drag co-
efficient, “LAI” is the LAI value in the cell, x is a species-
specific constant, u is the flow velocity, ux is the minimum
velocity used to find the x value, h is the water depth, and
hveg is the vegetation height. The CDx , x, and ux were ob-
tained from Aberle and Järvelä (2013).

The friction factor was then converted to the Manning co-
efficient using Eq. (2), from Box et al. (2021).

n=

√(
f

8gh−1/3

)
. (2)

where g is the gravitational acceleration.

3.3.2 Submerged vegetation state

As explained in Fortes et al. (2022), for submerged state, the
Manning coefficient was calculated by its relationship with
the degree of submergence of the vegetation. The data was
obtained from Japan Institute of country-ology and engineer-
ing (2002) and with regression analysis an exponential for-
mula was obtained with a coefficient of determination (R2)
of 0.87, shown in Eq. (3).

n= 0.084 ·
(
hwater hveg

)−0.98
+ 0.023. (3)

where hveg is the height of the vegetation and hwater is the
water depth.

3.4 Vegetation parameters

A k-means clustering algorithm was used in a sample of the
UAV image based on the RGB values, then visual supervi-
sion was applied to obtain the vegetated cells and a multi-
layer Perceptron (MLP) algorithm was trained, and then used
to predict the vegetated cells in the entire stretch.

The vegetation height was obtained by normalizing the
digital surface model (DSM) values, which comprises both
ground and above objects elevation, with the DEM values
in the vegetated cells. A more detailed explanation of the
method applied for the vegetation identification and height
calculation is found in Fortes et al. (2022).

3.4.1 Leaf area index

The leaf area index was obtained by downscaling the MODIS
LAI product from 500 to 10 m resolution using machine
learning (ML), like in Gokool et al. (2022).

An MLP regressor model was trained using NDVI and
EVI from MODIS as input variables and MODIS LAI as
the target variable in the entire Tohoku region of Japan. To
represent the summer seasons, MODIS images dating from
1 July 2020 to 30 September 2020 were averaged, then the
model was trained. Afterward, Sentinel-2 NDVI and EVI
with 10 m resolution from 30 September 2019 in the study
area were used in the trained model to obtain the LAI values
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Figure 2. LAI and vegetation height in the stretch from the obser-
vation of September 2019 (summer season).

over the catchment. The LAI values were then confined to
the vegetated cells in the UAV observation.

Different ML models were trained for each season with the
same method, using the averaged MODIS values from 1 Jan-
uary to 31 March 2020 (winter), 1 April to 30 June 2020
(spring), and 1 October to 31 December 2020 (autumn).
Sentinel-2 images for each season were used to predict their
respective LAI values and distribution in the stretch.

4 Results and discussion

4.1 Vegetation conditions

The vegetation location was successfully obtained, with the
MLP model achieving an accuracy of 0.99 for summer and
spring and 0.96 for autumn and winter (Fortes et al., 2022).

The total vegetated area in September 2019 was
82 800 m2, representing about 18 % of the total area of the
stretch. The height of the vegetation was 1.7 m in average
and the LAI was 2.43 in average. Figure 2 shows the esti-
mated vegetation height and LAI in the stretch in the summer
period, from the observations from September 2019.

4.2 Hydrologic simulation

As shown in Fortes et al. (2022), the RRI simulation could
produce accurate results, with simulated water depth similar
to the observed. Nash-Sutcliffe coefficient at each of the sta-
tions was −0.37 in Kawazaki, 0.77 in Ogaku, 0.88 in Ichi-
nazaka, 0.73 in Iwakiri, and 0.62 in Fukuda Ohashi. Since
most values ranged from 0.62 to 0.88, reaching values close
to 1, the simulation was considered accurate, and the dis-
charge obtained in the upstream section of the stretch was
used in the hydraulic model. The peak discharge at the outlet
was about 1250 m3 s−1, lower than the peak discharge of a
100-year return period flood event. In the stretch upstream, it
was about 1050 m3 s−1.

Figure 3. Longitudinal view of simulated water level and observed
water level at five sections during peak inundation.

4.3 Hydraulic simulations

The recreation of the typhoon event has shown a fair result
when comparing simulated and observed water levels. The
RMSE calculated for each simulation was 0.141 for SMS,
0.189 for PDMS, and 0.137 for FDMS. Figure 3 shows the
peak water profile of the three simulations and the observed
points.

The SMS and FDMS achieved the best results, closer to
the observed water level. On the other hand, the PDMS
achieved a higher water level, presenting an overestimation
of the inundation. This happened due to the blockage of
water flow in the emergent vegetation state. With Manning
being dynamically calculated for both vegetation states, the
FDMS presented a similar result when compared with the
SMS, suggesting that the applied Manning algorithm is a
valid substitute for calibrated static Manning values. The
FDMS achieved the lowest RMSE, which agrees with the
conclusions of Ebrahimi et al. (2008). This is important be-
cause the FDMS model does not require much calibration
in terms of Manning value, with calibration being necessary
only for the non-vegetated cells.

The seasonal changes of the vegetation conditions were as
expected. Due to the lack of foliage, the vegetated area dras-
tically reduced during the autumn and winter seasons. The
peak vegetated area was in summer, followed by spring. The
Manning values in the peak water level of each simulation
were averaged for the entire terrain and compared with the
ratio of the vegetated area over the entire stretch area.

Figure 4 shows the vegetated area in each season and the
peak average Manning value. It clearly shows that the aver-
age Manning values strongly relate to the percentage of veg-
etated area in the stretch. Regarding the effect of the vegeta-
tion on the water level profile of each season, with the highest
Manning, value, presented the highest water level profile of
all seasons. The difference in water level between spring, au-
tumn, and winter was not very perceptible. The highest dif-
ference in the water level profiles was between summer and
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Figure 4. Vegetated area ratio and average peak Manning in all
seasons.

winter, with 27.1 centimeters on average, and the lowest was
between summer and spring, with 26.4 centimeters.

5 Conclusions

Machine learning proved to be an effective tool to acquire
remote sensing vegetation data. The typhoon event could
be accurately reconstructed in the study area. The FDMS
presented the lowest RMSE value of 0.137, with a water
level profile similar to the one produced by the SMS. This
means that the Manning calculation algorithm worked well
and was a good substitute for the static Manning of 0.038.
The FDMS presented the advantage of requiring less cali-
bration to achieve accurate results. Since the PDMS did not
consider water flow in the emergent vegetation, it presented
an overestimation of the inundation, being less applicable.
The results show an advance in considering vegetation pa-
rameters to calculate Manning at a pixel level, but the models
need to be tested in more rivers to fully validate the Manning
algorithm.

The seasonal effect of the vegetation was demonstrated
when the average Manning in the stretch in the peak was
compared to the ratio of vegetated area, which demonstrated
a strong relationship.
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