Articles | Volume 385
https://doi.org/10.5194/piahs-385-443-2024
https://doi.org/10.5194/piahs-385-443-2024
Post-conference publication
 | 
19 Apr 2024
Post-conference publication |  | 19 Apr 2024

Assessing the Accuracy of Multiple Classification Algorithms Combining Sentinel-1 and Sentinel-2 for the Citrus Crop Classification and spatialization of the Actual Evapotranspiration Obtained from Flux Tower Eddy Covariance: Case Study of Cap Bon, Tunisia

Amal Chakhar, Rim Zitouna-Chebbi, David Hernández-López, Rocío Ballesteros, Imen Mahjoub, and Miguel A. Moreno

Related authors

Analysis of rainfed cereal-legume mixture cropping water productivity in Lebna catchment, Cap-Bon, Tunisia
Insaf Mekki, Rim Zitouna-Chebbi, Salah Benyoussef, Aya Benabdelghaffar, Mariem Boukari, Frédéric Jacob, and Jean Albergel
Proc. IAHS, 385, 313–317, https://doi.org/10.5194/piahs-385-313-2024,https://doi.org/10.5194/piahs-385-313-2024, 2024
Short summary
TREE-LEVEL FUEL CONNECTIVITY TO ASSESS CROWN WILDFIRE POTENTIAL BY UAS-BASED PHOTOGRAMMETRY
M. Herrero-Huerta, D. Sánchez-Jiménez, A. del Campo-Sanchez, D. Cifuentes-Jimenez, L. Piedelobo-Martín, P. de Andres-Anaya, E. Gonzalez-Gonzalez, R. Yali Samaniego, S. del Pozo, D. Hernandez-Lopez, S. Lagüela, and D. González-Aguilera
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1743–1748, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1743-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1743-2023, 2023
PHOTOMATCH: AN OPEN-SOURCE MULTI-VIEW AND MULTI-MODAL FEATURE MATCHING TOOL FOR PHOTOGRAMMETRIC APPLICATIONS
D. González-Aguilera, E. Ruiz de Oña, L. López-Fernandez, E. M. Farella, E. K. Stathopoulou, I. Toschi, F. Remondino, P. Rodríguez-Gonzálvez, D. Hernández-López, A. Fusiello, and F. Nex
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2020, 213–219, https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-213-2020,https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-213-2020, 2020
SENSOR FUSION FOR 3D ARCHAEOLOGICAL DOCUMENTATION AND RECONSTRUCTION: CASE STUDY OF “CUEVA PINTADA” IN GALDAR, GRAN CANARIA
S. Del Pozo, P. Rodríguez-Gonzálvez, D. Hernández-López, J. Onrubia-Pintado, and D. González-Aguilera
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W15, 373–379, https://doi.org/10.5194/isprs-archives-XLII-2-W15-373-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W15-373-2019, 2019
Evaluating four gap-filling methods for eddy covariance measurements of evapotranspiration over hilly crop fields
Nissaf Boudhina, Rim Zitouna-Chebbi, Insaf Mekki, Frédéric Jacob, Nétij Ben Mechlia, Moncef Masmoudi, and Laurent Prévot
Geosci. Instrum. Method. Data Syst., 7, 151–167, https://doi.org/10.5194/gi-7-151-2018,https://doi.org/10.5194/gi-7-151-2018, 2018
Short summary

Cited articles

Chakhar, A., Hernández-López, D., Ballesteros, R., and Moreno, M. A.: Improving the Accuracy of Multiple Algorithms for Crop Classification by Integrating Sentinel-1 Observations with Sentinel-2 Data, Remote Sens., 13, 1–21, https://doi.org/10.3390/rs13020243, 2021. 
Copernicus Open Access Hub: Sentinel-2 archives, https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/data-products, last access: 12 December 2023. 
Er-Raki, S., Chehbouni, A., Guemouria, N., Duchemin, B., Ezzahar, J., and Hadria, R.: Combining FAO-56 Model and Ground-Based Remote Sensing to Estimate Water Consumptions of Wheat Crops in a Semi-Arid Region, Agr. Water Manage., 87, 41–54, https://doi.org/10.1016/j.agwat.2006.02.004, 2007. 
Glenn, E. P., Christopher, M. U. N., Hunsaker, D. J., and Nagler, P. L.: Vegetation Index-Based Crop Coefficients to Estimate Evapotranspiration by Remote Sensing in Agricultural and Natural Ecosystems, Hydrol. Process., 25, 4050–4062, https://doi.org/10.1002/hyp.8392, 2011. 
Hamouda, M. F. B.: Approche Hydrogéologique et Isotopique Des Systèmes Aquifères Côtiers Du Cap Bon: Cas Des Nappes de La Côte Orientale et d'El Haouaria, Tunisie, PhD, INAT, 2008. 
Download
Short summary
It is very important to have accurate estimation of the total area of citrus plots. To achieve this objective, we performed crop classification using Sentinel-1 and -2. Additionally, ETa was available, so we tried to find it is potential relation with NDVI. The results were obtained with the classifier SVM using GEE Google Earth Engine and provided a significant contribution to the citrus crop classification also highlighted the potential to extrapolate accurate ET estimation to larger scales.