Articles | Volume 383
https://doi.org/10.5194/piahs-383-267-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-383-267-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Linking drought indices to impacts in the Liaoning Province of China
Miaomiao Ma
CORRESPONDING AUTHOR
Research center on Flood & Drought Disaster Reduction of the
Ministry of Water Resources, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, China
Juan Lv
Research center on Flood & Drought Disaster Reduction of the
Ministry of Water Resources, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, China
Zhicheng Su
Research center on Flood & Drought Disaster Reduction of the
Ministry of Water Resources, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, China
Jamie Hannaford
Center of Ecology and Hydrology, Wallingford, UK
Hongquan Sun
Research center on Flood & Drought Disaster Reduction of the
Ministry of Water Resources, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, China
Yanping Qu
Research center on Flood & Drought Disaster Reduction of the
Ministry of Water Resources, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, China
Zikang Xing
Research center on Flood & Drought Disaster Reduction of the
Ministry of Water Resources, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, China
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering & College of Hydrology and Water Resources, HOHAI University, Nanjing, China
Lucy Barker
Center of Ecology and Hydrology, Wallingford, UK
Yaxu Wang
Research center on Flood & Drought Disaster Reduction of the
Ministry of Water Resources, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, China
Related authors
Lu Gao, Haijun Deng, Xiangyong Lei, Jianhui Wei, Yaning Chen, Zhongqin Li, Miaomiao Ma, Xingwei Chen, Ying Chen, Meibing Liu, and Jianyun Gao
The Cryosphere, 15, 5765–5783, https://doi.org/10.5194/tc-15-5765-2021, https://doi.org/10.5194/tc-15-5765-2021, 2021
Short summary
Short summary
There is a widespread controversy on the existence of the elevation-dependent warming (EDW) phenomenon due to the limited observations in high mountains. This study provides new evidence of EDW from the Chinese Tian Shan based on a high-resolution (1 km, 6-hourly) air temperature dataset. The result reveals the significant EDW on a monthly scale. The warming rate of the minimum temperature in winter showed a significant elevation dependence (p < 0.01), especially above 3000 m.
Zikang Xing, Miaomiao Ma, Zhicheng Su, Juan Lv, Peng Yi, and Wenlong Song
Proc. IAHS, 383, 261–266, https://doi.org/10.5194/piahs-383-261-2020, https://doi.org/10.5194/piahs-383-261-2020, 2020
Yaxu Wang, Juan Lv, Jamie Hannaford, Yicheng Wang, Hongquan Sun, Lucy J. Barker, Miaomiao Ma, Zhicheng Su, and Michael Eastman
Nat. Hazards Earth Syst. Sci., 20, 889–906, https://doi.org/10.5194/nhess-20-889-2020, https://doi.org/10.5194/nhess-20-889-2020, 2020
Short summary
Short summary
Due to the specific applicability of drought impact indicators, this study identifies which drought indicators are suitable for characterising drought impacts and the contribution of vulnerability factors. The results show that the relationship varies across different drought impacts and cities; some factors have a strong positive correlation with drought vulnerability. This study can support drought planning work and provide background for the indices used in drought monitoring applications.
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-293, https://doi.org/10.5194/hess-2024-293, 2024
Preprint under review for HESS
Short summary
Short summary
This extended review asks whether hydrological (river flow) droughts have become more severe over time in the UK, based on literature review and original analyses. The UK is a good international exemplar, given the richness of available data. We find that there is little compelling evidence towards a trend towards worsening river flow droughts, at odds with future climate change projections. We outline reasons for this discrepancy and make recommendations to guide researchers and policymakers.
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024, https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Short summary
Hydrological hazards affect people and ecosystems, but extremes are not fully understood due to limited observations. A large climate ensemble and simple hydrological model are used to assess unprecedented but plausible floods and droughts. The chain gives extreme flows outside the observed range: summer 2022 ~ 28 % lower and autumn 2023 ~ 42 % higher. Spatial dependence and temporal persistence are analysed. Planning for such events could help water supply resilience and flood risk management.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Ed Hawkins, Nigel Arnell, Jamie Hannaford, and Rowan Sutton
Geosci. Commun., 7, 161–165, https://doi.org/10.5194/gc-7-161-2024, https://doi.org/10.5194/gc-7-161-2024, 2024
Short summary
Short summary
Climate change can often seem rather remote, especially when the discussion is about global averages which appear to have little relevance to local experiences. But those global changes are already affecting people, even if they do not fully realise it, and effective communication of this issue is critical. We use long observations and well-understood physical principles to visually highlight how global emissions influence local flood risk in one river basin in the UK.
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
EGUsphere, https://doi.org/10.5194/egusphere-2024-1969, https://doi.org/10.5194/egusphere-2024-1969, 2024
Short summary
Short summary
In this study, we present a detailed characterisation of flash drought in United Kingdom over the period 1969–2021.The spatiotemporal distribution of flash droughts is highly variable, with important regional and seasonal contrasts. In the UK, flash drought occurrence responds primarily to precipitation variability, although the atmospheric evaporative demand (AED) is important as a secondary driver. The atmospheric and oceanic conditions during flash droughts development were also analyzed.
Maliko Tanguy, Michael Eastman, Amulya Chevuturi, Eugene Magee, Elizabeth Cooper, Robert H. B. Johnson, Katie Facer-Childs, and Jamie Hannaford
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-179, https://doi.org/10.5194/hess-2024-179, 2024
Preprint under review for HESS
Short summary
Short summary
Our research compares two techniques, Bias-Correction (BC) and Data Assimilation (DA), for improving river flow forecasts across 316 UK catchments. BC, which corrects errors post-simulation, showed broad improvements, while DA, adjusting model states pre-forecast, excelled in specific conditions like snowmelt and high base flows. Each method's unique strengths suit different scenarios. These insights can enhance forecasting systems, offering reliable and user-friendly hydrological predictions.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Lu Gao, Haijun Deng, Xiangyong Lei, Jianhui Wei, Yaning Chen, Zhongqin Li, Miaomiao Ma, Xingwei Chen, Ying Chen, Meibing Liu, and Jianyun Gao
The Cryosphere, 15, 5765–5783, https://doi.org/10.5194/tc-15-5765-2021, https://doi.org/10.5194/tc-15-5765-2021, 2021
Short summary
Short summary
There is a widespread controversy on the existence of the elevation-dependent warming (EDW) phenomenon due to the limited observations in high mountains. This study provides new evidence of EDW from the Chinese Tian Shan based on a high-resolution (1 km, 6-hourly) air temperature dataset. The result reveals the significant EDW on a monthly scale. The warming rate of the minimum temperature in winter showed a significant elevation dependence (p < 0.01), especially above 3000 m.
Qianfeng Wang, Rongrong Zhang, Yanping Qu, Jingyu Zeng, Xiaoping Wu, Xiaozhen Zhou, Binyu Ren, Xiaohan Li, and Duhui Zhou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-105, https://doi.org/10.5194/essd-2021-105, 2021
Preprint withdrawn
Short summary
Short summary
The standardized precision index (SPI), which is commonly used for drought monitoring and assessment, is limited by its temporal resolution and cannot identify flash drought in less than one month. Therefore, we developed a new daily SPI dataset. The results show that the drought events identified by our SPI dataset were consistent with the historical drought events, which is effective and reliable. At the same time, the dataset will be open to the public free of charge.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Lucy J. Barker, Jamie Hannaford, and Miaomiao Ma
Proc. IAHS, 383, 273–279, https://doi.org/10.5194/piahs-383-273-2020, https://doi.org/10.5194/piahs-383-273-2020, 2020
Short summary
Short summary
Drought monitoring and early warning are critical aspects of drought preparedness and can help mitigate impacts on society and the environment. We reviewed academic literature in England and Chinese on the topic of drought monitoring and early warning in China. The number of papers on this topic has increased substantially but the most recent advances have not been operationalised. We identify the methods that can be translated from the experimental to national, operational systems.
Zikang Xing, Miaomiao Ma, Zhicheng Su, Juan Lv, Peng Yi, and Wenlong Song
Proc. IAHS, 383, 261–266, https://doi.org/10.5194/piahs-383-261-2020, https://doi.org/10.5194/piahs-383-261-2020, 2020
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Y. Lu, W. Song, Z. Su, J. Lü, Y. Liu, and M. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 697–702, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-697-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-697-2020, 2020
Yaxu Wang, Juan Lv, Jamie Hannaford, Yicheng Wang, Hongquan Sun, Lucy J. Barker, Miaomiao Ma, Zhicheng Su, and Michael Eastman
Nat. Hazards Earth Syst. Sci., 20, 889–906, https://doi.org/10.5194/nhess-20-889-2020, https://doi.org/10.5194/nhess-20-889-2020, 2020
Short summary
Short summary
Due to the specific applicability of drought impact indicators, this study identifies which drought indicators are suitable for characterising drought impacts and the contribution of vulnerability factors. The results show that the relationship varies across different drought impacts and cities; some factors have a strong positive correlation with drought vulnerability. This study can support drought planning work and provide background for the indices used in drought monitoring applications.
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Short summary
It is important to understand historic droughts in order to plan and prepare for possible future events. In this study we use the standardised streamflow index for 1891–2015 to systematically identify, characterise and rank hydrological drought events for 108 near-natural UK catchments. Results show when and where the most severe events occurred and describe events of the early 20th century, providing catchment-scale detail important for both science and planning applications of the future.
Katie A. Smith, Lucy J. Barker, Maliko Tanguy, Simon Parry, Shaun Harrigan, Tim P. Legg, Christel Prudhomme, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 23, 3247–3268, https://doi.org/10.5194/hess-23-3247-2019, https://doi.org/10.5194/hess-23-3247-2019, 2019
Short summary
Short summary
This paper describes the multi-objective calibration approach used to create a consistent dataset of reconstructed daily river flow data for 303 catchments in the UK over 1891–2015. The modelled data perform well when compared to observations, including in the timing and the classification of drought events. This method and data will allow for long-term studies of flow trends and past extreme events that have not been previously possible, enabling water managers to better plan for the future.
Maliko Tanguy, Christel Prudhomme, Katie Smith, and Jamie Hannaford
Earth Syst. Sci. Data, 10, 951–968, https://doi.org/10.5194/essd-10-951-2018, https://doi.org/10.5194/essd-10-951-2018, 2018
Short summary
Short summary
Potential evapotranspiration (PET) is necessary input data for most hydrological models, used to simulate river flows. To reconstruct PET prior to the 1960s, simplified methods are needed because of lack of climate data required for complex methods. We found that the McGuinness–Bordne PET equation, which only needs temperature as input data, works best for the UK provided it is calibrated for local conditions. This method was used to produce a 5 km gridded PET dataset for the UK for 1891–2015.
Erik Tijdeman, Jamie Hannaford, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 1051–1064, https://doi.org/10.5194/hess-22-1051-2018, https://doi.org/10.5194/hess-22-1051-2018, 2018
Short summary
Short summary
In this study, a screening approach was applied on a set of streamflow records for which various human influences are indicated to identify streamflow records that have drought characteristics that deviate from those expected under pristine conditions. Prolonged streamflow drought duration, a weaker correlation between streamflow and precipitation, and changes in streamflow drought occurrence over time were related to human influences such as groundwater abstractions or reservoir operations.
Sophie Bachmair, Cecilia Svensson, Ilaria Prosdocimi, Jamie Hannaford, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 17, 1947–1960, https://doi.org/10.5194/nhess-17-1947-2017, https://doi.org/10.5194/nhess-17-1947-2017, 2017
Short summary
Short summary
This study tests the potential for developing empirical
drought impact functionsbased on hydro-meteorological drought indicators as predictors and text-based reports on drought impacts as a surrogate variable for drought damage. We showcase three data-driven modeling approaches and assess the effect of impact report quantification method.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
S. Bachmair, C. Svensson, J. Hannaford, L. J. Barker, and K. Stahl
Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, https://doi.org/10.5194/hess-20-2589-2016, 2016
Short summary
Short summary
To date, there is little empirical evidence as to which indicator best represents drought impact occurrence for any given region and/or sector. We therefore exploited text-based data from the European Drought Impact report Inventory (EDII) to evaluate drought indicators, empirically determine indicator thresholds, and model drought impacts. A quantitative analysis using Germany and the UK as a testbed proved to be a useful tool for objectively appraising drought indicators.
Lucy J. Barker, Jamie Hannaford, Andrew Chiverton, and Cecilia Svensson
Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, https://doi.org/10.5194/hess-20-2483-2016, 2016
Short summary
Short summary
Standardised meteorological indicators are widely used in drought monitoring, but applications to hydrological drought are less extensive. Here we assess the utility of standardised indicators for characterising drought duration, severity and propagation in a diverse set of 121 UK catchments. Spatial variations in streamflow drought characteristics reflect differences in drought propagation behaviour that are themselves largely driven by heterogeneity in catchment properties around the UK.
Kerstin Stahl, Irene Kohn, Veit Blauhut, Julia Urquijo, Lucia De Stefano, Vanda Acácio, Susana Dias, James H. Stagge, Lena M. Tallaksen, Eleni Kampragou, Anne F. Van Loon, Lucy J. Barker, Lieke A. Melsen, Carlo Bifulco, Dario Musolino, Alessandro de Carli, Antonio Massarutto, Dionysis Assimacopoulos, and Henny A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, https://doi.org/10.5194/nhess-16-801-2016, 2016
Short summary
Short summary
Based on the European Drought Impact report Inventory (EDII), the study presents an assessment of the occurrence and diversity of drought impacts across Europe. A unique research database has collected close to 5000 textual drought impact reports from 33 European countries. Consistently, reported impacts have been dominated in number by agriculture and water supply, but were very diverse across other sectors. Data and assessment may help drought policy planning at the international level.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
A. Chiverton, J. Hannaford, I. P. Holman, R. Corstanje, C. Prudhomme, T. M. Hess, and J. P. Bloomfield
Hydrol. Earth Syst. Sci., 19, 2395–2408, https://doi.org/10.5194/hess-19-2395-2015, https://doi.org/10.5194/hess-19-2395-2015, 2015
Short summary
Short summary
Current hydrological change detection methods are subject to a host of limitations. This paper develops a new method, temporally shifting variograms (TSVs), which characterises variability in the river flow regime using several parameters, changes in which can then be attributed to precipitation characteristics. We demonstrate the use of the method through application to 94 UK catchments, showing that periods of extremes as well as more subtle changes can be detected.
C. K. Folland, J. Hannaford, J. P. Bloomfield, M. Kendon, C. Svensson, B. P. Marchant, J. Prior, and E. Wallace
Hydrol. Earth Syst. Sci., 19, 2353–2375, https://doi.org/10.5194/hess-19-2353-2015, https://doi.org/10.5194/hess-19-2353-2015, 2015
Short summary
Short summary
The English Lowlands is a heavily populated, water-stressed region, which is vulnerable to long droughts typically associated with dry winters. We conduct a long-term (1910-present) quantitative analysis of precipitation, flow and groundwater droughts for the region, and then review potential climatic drivers. No single driver is dominant, but we demonstrate a physical link between La Nina conditions, winter rainfall and long droughts in the region.
J. Hannaford, G. Buys, K. Stahl, and L. M. Tallaksen
Hydrol. Earth Syst. Sci., 17, 2717–2733, https://doi.org/10.5194/hess-17-2717-2013, https://doi.org/10.5194/hess-17-2717-2013, 2013
Cited articles
Bachmair, S., Kohn, I., and Stahl, K.: Exploring the link between drought indicators and impacts, Nat. Hazards Earth Syst. Sci., 15, 1381–1397, https://doi.org/10.5194/nhess-15-1381-2015, 2015.
Bachmair, S., Stahl, K., Collins, K., Hannaford J., Acreman, M., Svoboda, M.,
Knutson, C., Simth, K. H., Wall, N., Fuchs, B., Crossman, N. D., and Overton, I. C.:
Drought indicators revisited: the need for a wider consideration of
environment and society, Wiley Interdisciplin. Rev.: Water, 3, 516–536, https://doi.org/10.1002/wat2.1154, 2016a.
Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A quantitative analysis to objectively appraise drought indicators and model drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, 2016b.
Huang, X., Li, X., Mu, X., Wang, K., Tian, K., Duan, C., and Yu, F.: The severe drought
occurred in south China in 2010: An examination from perspective of ecology,
Research of Soil and Water Conservation, 20, 282–292, 2013 (in Chinese with English abstract).
Li, C.: The Effects of Flood Waterlogging and Drought on Environment, Journal
of Shanxi Water Power, 11, 57–61, 1995 (in Chinese with English
abstract).
Quinn, L., Nieuwaal, M., Howarth, S., Lv, J., Yu, M., Su, Z., Wu, Y., Qu, Y., Wang,
Y., and Sun H.: TA8185: Pilot Implementation of the Drought Management Strategy,
People's Republic of China: Pilot Implementation of the Drought Management
Strategy, Asian Development Bank Technical Assistance Consultant's Final
Report, Mott Macdonald, Beijing, China, 2014.
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.: Impacts of European drought events: insights from an international database of text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016.
State Flood Control and Drought Relief Headquarters of Ministry of Water
Resources, China: The statistics of Flood and drought disaster bulletin in
China (2000–2017), China Water & Power Press, available at: http://www.mwr.gov.cn/sj/tjgb/zgshzhgb/201808/t20180806_1044770.html (last access: 6 August 2018), 2017.