Articles | Volume 382
https://doi.org/10.5194/piahs-382-609-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-382-609-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GreenhousePeat: a model linking CO2 emissions from subsiding peatlands to changing groundwater levels
TNO – Geological Survey of the Netherlands, dpt. Geomodelling, Utrecht, the Netherlands
Arnoud Frumau
TNO – Circular Economy and Environment, dpt. Environmental Modeling, Sensing and Analysis, Petten, the Netherlands
Jan Stafleu
TNO – Geological Survey of the Netherlands, dpt. Geomodelling, Utrecht, the Netherlands
Joris Dijkstra
TNO – Geological Survey of the Netherlands, dpt. Geomodelling, Utrecht, the Netherlands
Arjan Hensen
TNO – Circular Economy and Environment, dpt. Environmental Modeling, Sensing and Analysis, Petten, the Netherlands
Ilona Velzeboer
TNO – Circular Economy and Environment, dpt. Environmental Modeling, Sensing and Analysis, Petten, the Netherlands
Joana Esteves Martins
TNO – Geological Survey of the Netherlands, dpt. Advisory Group for Economic Affairs, Utrecht, the Netherlands
Willem Jan Zaadnoordijk
TNO – Geological Survey of the Netherlands, dpt. Geomodelling, Utrecht, the Netherlands
Related authors
Kay Koster, Jan Stafleu, Peter C. Vos, and Michiel J. van der Meulen
Proc. IAHS, 382, 767–773, https://doi.org/10.5194/piahs-382-767-2020, https://doi.org/10.5194/piahs-382-767-2020, 2020
Thibault Candela, Kay Koster, Jan Stafleu, Wilfred Visser, and Peter Fokker
Proc. IAHS, 382, 427–431, https://doi.org/10.5194/piahs-382-427-2020, https://doi.org/10.5194/piahs-382-427-2020, 2020
Short summary
Short summary
We propose a novel approach combining data and model for shallow subsidence predictions in the Netherlands.
Tycho Jongenelen, Margreet C. van Zanten, Enrico Dammers, Roy Wichink Kruit, Arjan Hensen, Leon F. G. Geers, and Jan Willem Erisman
EGUsphere, https://doi.org/10.5194/egusphere-2024-2881, https://doi.org/10.5194/egusphere-2024-2881, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This article compares three ammonia (NH3) deposition models at a dune ecosystem and investigates the uncertainty of these models. The Zhang model aligned best with the measurements, whereas the DEPAC and Massad models overestimated and underestimated the NH3 deposition, respectively. The study found that NH3 exchange with wet plant leaves was an important but uncertain process, and offers recommendations to improve future models and suggest measurements to lower the existing uncertainty.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Xinya Liu, Bas Henzing, Arjan Hensen, Jan Mulder, Peng Yao, Danielle van Dinther, Jerry van Bronckhorst, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 3405–3420, https://doi.org/10.5194/acp-24-3405-2024, https://doi.org/10.5194/acp-24-3405-2024, 2024
Short summary
Short summary
We evaluated the time-of-flight aerosol chemical speciation monitor (TOF-ACSM) following the implementation of the PM2.5 aerodynamic lens and a capture vaporizer (CV). The results showed that it significantly improved the accuracy and precision of ACSM in the field observations. The paper elucidates the measurement outcomes of various instruments and provides an analysis of their biases. This comprehensive evaluation is expected to benefit the ACSM community and other aerosol field measurements.
Camille Viatte, Nadir Guendouz, Clarisse Dufaux, Arjan Hensen, Daan Swart, Martin Van Damme, Lieven Clarisse, Pierre Coheur, and Cathy Clerbaux
Atmos. Chem. Phys., 23, 15253–15267, https://doi.org/10.5194/acp-23-15253-2023, https://doi.org/10.5194/acp-23-15253-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important air pollutant which, as a precursor of fine particulate matter, raises public health concerns. Models have difficulty predicting events of pollution associated with NH3 since ground-based observations of this gas are still relatively sparse and difficult to implement. We present the first relatively long (2.5 years) and continuous record of hourly NH3 concentrations in Paris to determine its temporal variabilities at different scales to unravel emission sources.
Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Alexandru Dandocsi, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann
Atmos. Chem. Phys., 23, 10399–10412, https://doi.org/10.5194/acp-23-10399-2023, https://doi.org/10.5194/acp-23-10399-2023, 2023
Short summary
Short summary
In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. We show that the total CH4 emissions in our studied areas are much higher than the emissions reported to UNFCCC, and up to three-quarters of the detected emissions are related to operational venting. Our results suggest that oil and gas production infrastructure in Romania holds a massive mitigation potential.
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
Anja Ražnjević, Chiel van Heerwaarden, Bart van Stratum, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, and Maarten Krol
Atmos. Chem. Phys., 22, 6489–6505, https://doi.org/10.5194/acp-22-6489-2022, https://doi.org/10.5194/acp-22-6489-2022, 2022
Short summary
Short summary
Mobile measurement techniques (e.g., instruments placed in cars) are often employed to identify and quantify individual sources of greenhouse gases. Due to road restrictions, those observations are often sparse (temporally and spatially). We performed high-resolution simulations of plume dispersion, with realistic weather conditions encountered in the field, to reproduce the measurement process of a methane plume emitted from an oil well and provide additional information about the plume.
Janneke van Ginkel, Elmer Ruigrok, Jan Stafleu, and Rien Herber
Nat. Hazards Earth Syst. Sci., 22, 41–63, https://doi.org/10.5194/nhess-22-41-2022, https://doi.org/10.5194/nhess-22-41-2022, 2022
Short summary
Short summary
A soft, shallow subsurface composition has the tendency to amplify earthquake waves, resulting in increased ground shaking. Therefore, this paper presents a workflow in order to obtain a map classifying the response of the subsurface based on local geology, earthquake signals, and background noise recordings for the Netherlands. The resulting map can be used as a first assessment in regions with earthquake hazard potential by mining or geothermal energy activities, for example.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Kay Koster, Jan Stafleu, Peter C. Vos, and Michiel J. van der Meulen
Proc. IAHS, 382, 767–773, https://doi.org/10.5194/piahs-382-767-2020, https://doi.org/10.5194/piahs-382-767-2020, 2020
Thibault Candela, Kay Koster, Jan Stafleu, Wilfred Visser, and Peter Fokker
Proc. IAHS, 382, 427–431, https://doi.org/10.5194/piahs-382-427-2020, https://doi.org/10.5194/piahs-382-427-2020, 2020
Short summary
Short summary
We propose a novel approach combining data and model for shallow subsidence predictions in the Netherlands.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Miguel Portillo-Estrada, Mari Pihlatie, Janne F. J. Korhonen, Janne Levula, Arnoud K. F. Frumau, Andreas Ibrom, Jonas J. Lembrechts, Lourdes Morillas, László Horváth, Stephanie K. Jones, and Ülo Niinemets
Biogeosciences, 13, 1621–1633, https://doi.org/10.5194/bg-13-1621-2016, https://doi.org/10.5194/bg-13-1621-2016, 2016
Short summary
Short summary
We studied tree and grass litter decomposition across several climates in Europe. Climatic (air temperature, precipitation and soil water content) controls on litter decomposition were quantitatively more important than species or site of origin. The data were used to generate prediction models of remaining litter mass, and carbon and nitrogen contents during the decomposition period. We also observed a significant drop in remaining litter mass after the first couple of days of decomposition.
Cited articles
Arets, E. J. M. M., van der Kolk, J. W. H., Hengeveld, G. M., Lesschen, J. P.,
Kramer, H., Kuikman, P. J., and Schelhaas, M. J.: Greenhouse gas reporting of the
LULUCF sector in the Netherlands. Methodological background, update 2019,
Wettelijke Onderzoekstaken Natuur & Milieu, WOt-technical report 146,
113 pp., 2019.
BISNederland: Online soil and groundwater information of the Netherlands,
WEnR, available at:
http://maps.bodemdata.nl/, last access: November 2019.
Bodemdalingskaart: Online nationwide subsidence map of the Netherlands, 2018, available at:
https://bodemdalingskaart.nl/, last access: November 2019.
De Glopper, R. J.: Subsidence after drainage of the deposits in the former
Zuyder Zee and in the brackish and marine forelands in The Netherlands, Van
Zee tot Land, 205 pp., 1973.
Deverel, S. J., Ingrum, T., and Leigthon, D. A.: Present-day oxidative subsidence
of organic soils and mitigation in the Sacramento-San Joaquin delta,
California, USA, Hydrogeology, 24, 569–586, 2016.
Gambolati, G., Putti, M., Teatini, P., and Gasparetto Stori, G.: Subsidence
due to peat oxidation and impact on drainage infrastructures in a farmland
catchment south of the Venice Lagoon, Env. Geol., 46, 814–820, 2006.
Grondwatertools: Online portal for timeseries of groundwater wells, 2019, available at:
https://www.grondwatertools.nl/grondwatertools-viewer, last access: November 2019.
Hendriks, D. M. D., van Huissteden, J., Dolman, A. J., and van der Molen, M. K.: The full greenhouse gas balance of an abandoned peat meadow, Biogeosciences, 4, 411–424, https://doi.org/10.5194/bg-4-411-2007, 2007.
Hensen, A., Kieskamp, W. M., Vermeulen, A. T., Van den Bulk, W. G. M., Bakker,
D. F., Beemsterboer, B., Möls, J. J., Veltkamp, A. C., and Wyers, G. P.:
Determination of the relative importance of sources and sinks of carbon
dioxide, Report ECN-G-95-035, ECN, 68 pp., 1995.
Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., and Anshari, G.: Subsidence and carbon loss in drained tropical peatlands, Biogeosciences, 9, 1053–1071, https://doi.org/10.5194/bg-9-1053-2012, 2012.
IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume
4, Agriculture, Forestry and Other Land Use, IPCC National Greenhouse Gas
Inventories Programme, published by the Institute for Global Environmental
Strategies (IGES), Kanagawa, Japan, 2006.
IPCC: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse
Gas Inventories: Wetlands, edited by: Hiraishi, T., Krug, T., Tanabe, K., Srivastava,
N., Baasansuren, J., Fukuda, M., and Troxler, T. G., IPCC, Switzerland,
354 pp., 2013.
Jacobs, C. M. J., Moors, E. J., and van der Bolt, F. J. E.: Invloed van
waterbeheer op gekoppelde broeikasgasemissies in het veenweidegebied bij ROC
Zegveld, Alterra-rapport 840, Alterra, Wageningen, The
Netherlands, 2003 (in Dutch).
Kasimir-Klemedtsson, A., Klemedtsson, L., Berglund, K., Martikainen, P.,
Silvola, J., and Oenema, O.: Greenhouse gas emissions from farmed organic
soils: a review, Soil Use and Man., 13, 245–250, 1997.
Klein Tank, A., Beersma, J., Besseminder, J., Van de Hurk, B., and Lenderik,
G.: KNMI'14 klimaatscenario's voor Nederland; leidraad voor professionals in
klimaatadaptatie, KNMI, De Bilt, 36 pp., 2015 (in Dutch).
Koster, K., Stafleu, J., Cohen, K. M., Stouthamer, E., Busschers, F. S., and
Middelkoop, H.: Three-dimensional distribution of organic matter in
coastal-deltaic peat: Implications for subsidence and carbon dioxide
emissions by human-induced peat oxidation, Anthropocene, 22, 1–9, 2018.
Kroon, P. S.: Thesis: Eddy covariance observations of methane and nitrous
oxide emissions – towards more accurate estimates from ecosystems,
Technische Universiteit Delft, ISBN 978-90-9025388-6, 2010.
Kuikman, P. J., van den Akker, J. J. H., and de Vries, F.: Emission of N2O and
CO2 from organic agricultural soils, Alterra-report 1035.2, Alterra
Wageningen UR, Wageningen, The Netherlands, 2005.
Langeveld, C. A., Segers, R., Dirks, B. O. M., van den Pol-van Dasselaar, A.,
Velthof, G. L., and Hensen, A.: Emissions of CO2, CH4 and N2O from pasture on
drained peat soils in the Netherlands, Eur. J. Agr., 7, 35–42,
1997.
Moors, E., Dolman, H., Elbers, J., Hensen, A., Duyzer, J., Kroon, P., Veenendaal,
E., van Huissteden, K., Bosveld, F. C., Jacobs, C., Jans, W., Kuikman, P., Nol, L.,
and van Beek, C.: Integrated observations and modelling of greenhouse gas
budgets at the ecosystem level in the Netherlands, KvR report number KvR
055/12, 2012.
NHI: Online portal of hydrological data of the Netherlands, available at: http://www.nhi.nu/ (last access: November 2019), 2019.
NIR (Ruyssenaars, P. G., Coenen, P. W. H. G., Zijlema, P. J., Arets,
E. J. M. M., Baas, K., Dröge, R., Geilenkirchen, G., `t Hoen, M., Honig,
E., van Huet, B., Huis, E. P., Koch, W. W. R., Lagerwerf, L., te Molder, R.,
Montfoort, J. A., Peek, C. J., Vonk, J., and van Zanten, M.): Greenhouse Gas
Emissions in the Netherlands 1990–2017: National Inventory Report 2019,
https://doi.org/10.21945/RIVM-2019-0020 (also available at: https://www.rivm.nl/bibliotheek/rapporten/2019-0020.pdf), 2019.
Schothorst, C. J.: Subsidence of low moor peat soils in the western
Netherlands, Geoderma, 17, 265–291, 1977.
Schrier-Uijl, A. P., Kroon, P. S., Hensen, A., Leffelaar, P. A., Berendse, F.,
and Veenendaal, E. M.: Comparison of chamber and eddy covariance based CO2
and CH4 emission estimates in a heterogeneous grass ecosystem on peat,
Agr. Forest Meteorol., 150, 825–831, 2010.
Schrier-Uijl, A. P., Kroon, P. S., Hendriks, D. M. D., Hensen, A., Van Huissteden, J., Berendse, F., and Veenendaal, E. M.: Agricultural peatlands: towards a greenhouse gas sink – a synthesis of a Dutch landscape study, Biogeosciences, 11, 4559–4576, https://doi.org/10.5194/bg-11-4559-2014, 2014.
Reiche, M., Hädrich, A., Lischeid, G., and Küsel, K.: Impact of
manipulated drought and heavy rainfall events on peat mineralization
processes and source-sink functions on an acidic fen, J. Geophys. Res.-Biosc., 114, 1–13,
2009.
Sluijter, R., Plieger, M., Van oldenborgh, G. J., Beersma, J., and De Vries,
H.: De droogte van 2018, Een analyse op basis van het potentiële
neerslagtekort, KNMI, De Bilt, 39 pp., 2018 (in Dutch).
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will
drought events become more frequent and severe in Europe?, Int. J.
Climatol., 38, 1718–1736, 2018.
Stafleu, J., Maljers, D., Gunnink, J. L., Menkovic, A., and Busschers, F. S.:
3D modeling of the shallow subsurface of Zeeland, the Netherlands, Neth. J.
Geosc., 90, 293–310, 2011.
TNO-GSN: Online portal for digital geo-information, Geological Survey of the
Netherlands, available at: https://www.dinoloket.nl/en (last access: November 2019), 2019.
UNTC (United Nations Treaty Collection): “Paris Agreement”, 2016.
Van Asselen, S., Erkens, G., Stouthamer, S., Woolderink, H. A. G., Geeraert,
R. E. E., and Hefting, M. M.: The relative contribution of peat compaction and
oxidation to subsidence in built-up areas in the Rhine-Meuse delta, The
Netherlands, Sci. Total Environ., 636, 177–191, 2018.
Van Dam, H.: Acidication of three moorland polls in The Netherlands by acid
precipitation and extreme drought periods over seven decades, Freshwater
Biol., 20, 157–176, 1988.
Van den Akker, J. J. H., Kuikman, P. J., de Vries, F., Hoving, I., Pleijter,
M., Hendriks, R. F. A., Wolleswinkel, R. J., Simões, R. T. L., and Kwakernaak,
C.: Emission of CO2 from agricultural peat soils in the Netherlands and ways
to limit this emission, in: Proceedings of the 13th International Peat Congress After Wise Use – The
Future of Peatlands, edited by: Farrell, C. and Feehan, J.,
Vol. 1 Oral Presentations, Tullamore, Ireland, 8–13
June 2008, International Peat Society, Jyväskylä, Finland, 645–648,
2008.
Van den Akker, J. J. H., Hendriks, R. F. A., and Pleijter, M.: CO2 emissions of peat
soils in agricultural use: calculation and prevention, Agrociencia Uruguay,
16, 43–50, 2012.
Veenendaal, E. M., Kolle, O., Leffelaar, P. A., Schrier-Uijl, A. P., Van Huissteden, J., Van Walsem, J., Möller, F., and Berendse, F.: CO2 exchange and carbon balance in two grassland sites on eutrophic drained peat soils, Biogeosciences, 4, 1027–1040, https://doi.org/10.5194/bg-4-1027-2007, 2007.