Articles | Volume 382
https://doi.org/10.5194/piahs-382-525-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.Predicting land deformation by integrating InSAR data and cone penetration testing through machine learning techniques
Related authors
Cited articles
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a
Coerts, A.: Analysis of static cone penetration test data for subsurface
modelling: a methodology, Koninklijk Nederlands Aardrijkskundig Genootschap, the Netherlands,
1996. a
Du, Z., Ge, L., Ng, A. H.-M., Zhu, Q., Yang, X., and Li, L.: Correlating the
subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2
and ALOS-2 satellite images, Int. J. Appl. Earth
Obs., 67, 54–68, https://doi.org/10.1016/j.jag.2018.01.001,
2018. a
Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J.: The elements of
statistical learning: data mining, inference and prediction,
Math. Intell., 27, 83–85, 2005. a
Kempfert, D. H.-G. and Gebreselassie, D. B.: Excavations and Foundations in Soft Soils,
Springer Science & Business Media, Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-32895-5, 2006. a, b