Articles | Volume 382
https://doi.org/10.5194/piahs-382-525-2020
https://doi.org/10.5194/piahs-382-525-2020
Pre-conference publication
 | 
22 Apr 2020
Pre-conference publication |  | 22 Apr 2020

Predicting land deformation by integrating InSAR data and cone penetration testing through machine learning techniques

Melika Sajadian, Ana Teixeira, Faraz S. Tehrani, and Mathias Lemmens

Related authors

ON A KNOWLEDGE-BASED APPROACH TO THE CLASSIFICATION OF MOBILE LASER SCANNING POINT CLOUDS
M. Lemmens
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4, 343–349, https://doi.org/10.5194/isprs-archives-XLII-4-343-2018,https://doi.org/10.5194/isprs-archives-XLII-4-343-2018, 2018
CLASSIFICATION OF MOBILE LASER SCANNING POINT CLOUDS OF URBAN SCENES EXPLOITING CYLINDRICAL NEIGHBOURHOODS
M. Zheng, M. Lemmens, and P. van Oosterom
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 1225–1228, https://doi.org/10.5194/isprs-archives-XLII-2-1225-2018,https://doi.org/10.5194/isprs-archives-XLII-2-1225-2018, 2018
CLASSIFICATION OF MOBILE LASER SCANNING POINT CLOUDS FROM HEIGHT FEATURES
M. Zheng, M. Lemmens, and P. van Oosterom
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 321–325, https://doi.org/10.5194/isprs-archives-XLII-2-W7-321-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W7-321-2017, 2017

Cited articles

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a
Coerts, A.: Analysis of static cone penetration test data for subsurface modelling: a methodology, Koninklijk Nederlands Aardrijkskundig Genootschap, the Netherlands, 1996.  a
Du, Z., Ge, L., Ng, A. H.-M., Zhu, Q., Yang, X., and Li, L.: Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images, Int. J. Appl. Earth Obs., 67, 54–68, https://doi.org/10.1016/j.jag.2018.01.001, 2018. a
Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J.: The elements of statistical learning: data mining, inference and prediction, Math. Intell., 27, 83–85, 2005. a
Kempfert, D. H.-G. and Gebreselassie, D. B.: Excavations and Foundations in Soft Soils, Springer Science & Business Media, Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-32895-5, 2006. a, b
Download
Short summary
Cities developed on compressible soils are susceptible to land deformation. Its spatial and temporal monitoring and analysis are necessary for sustainable development of these cities. Techniques such as remote sensing or predictions based on soil characterization can be used to assess such deformations. The objective of this study is to combine these two using machine learning in an attempt to better predict and understand deformations.