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Abstract. Built environments developed on compressible soils are susceptible to land deformation. The spatio-
temporal monitoring and analysis of these deformations are necessary for sustainable development of cities.
Techniques such as Interferometric Synthetic Aperture Radar (InSAR) or predictions based on soil mechanics
using in situ characterization, such as Cone Penetration Testing (CPT) can be used for assessing such land
deformations. Despite the combined advantages of these two methods, the relationship between them has not
yet been investigated. Therefore, the major objective of this study is to reconcile InSAR measurements and CPT
measurements using machine learning techniques in an attempt to better predict land deformation.

1 Introduction

Built environments developed on unconsolidated and/or or-
ganic sediments are susceptible to land deformation due to
the weight of buildings, roads and fluctuation of ground wa-
ter level (Kempfert and Gebreselassie, 2006; Peduto et al.,
2016). Hence, the spatial and temporal monitoring and anal-
ysis of ground deformation is necessary for the sustainable
development of cities.

More specifically, in case of roads, the deformation causes
failure in serviceability and performance of the infrastruc-
ture and induces high maintenance and repair costs (Peduto
et al., 2016; Du et al., 2018). Unevenly deformed roads are
dangerous, damaging and inconvenient for both the vehicles
and passengers (Wijeyesekera et al., 2016). Furthermore, the
partial closures of the transportation networks during main-
tenance periods have adverse socioeconomic impacts. For
these reasons, predicting and continuous monitoring of the
ground deformation along infrastructure networks is of sig-
nificant importance for improving the network resilience (Pe-
duto et al., 2016; North et al., 2017).

For monitoring the rate of land deformation, advanced In-
terferometric Synthetic Aperture Radar techniques such as

Differential InSAR (DInSAR) can be used. SAR data cur-
rently has sufficient temporal resolution and by applying
DInSAR techniques, land deformation can be monitored on
the order of millimeters (SkyGeo, 2018). However, there are
always gaps in the final deformation results due to occlusion
and coherence loss in SAR imagery.

The potential of Cone Penetration Testing (CPT) for esti-
mating land deformation has been extensively studied in the
Geotechnical Engineering community (Koster et al., 2018a,
b; Verruijt and Van Baars, 2007; Kempfert and Gebreselassie,
2006). The CPT measurements provide quantitative informa-
tion about the characteristics of the soil layers including the
compressibility. However, CPT-based methods in estimat-
ing land deformation suffer primarily from empiricism and
spatial-temporal discontinuity.

Despite the application of these two methods in estimating
ground deformation, the direct relationship between the CPT
measurements and the rate of deformation acquired from
DInSAR has not yet been investigated. Therefore, the ma-
jor objective of this study is to reconcile DInSAR measure-
ments and CT measurements using Machine Learning (ML)
techniques to better predict land deformation. In Sect. 2, the
proposed methodology for solving this problem is explained.
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In Sect. 3, the proposed methodology is applied on an exam-
ple case study of a road in the Netherlands. Finally, in Sect. 4,
the final conclusions are stated and followed by the acknowl-
edgements.

2 Methodology

The overall methodology consists of four main steps – see
Fig. 1 (Sajadian, 2019). The first two steps are mainly con-
cerned with gathering and pre-processing of the datasets, in
which the relevant parameters for the next steps are extracted.
In the third step, the correlations and similarities are investi-
gated. In the fourth step, we use Machine Learning to define
the relationship between soil properties, loading/unloading
history and the linear rate of deformation.

2.1 Steps 1 and 2: Data Gathering and Extracting
Parameters

The relevant parameters from CPT measurements such as
depth, cone resistance qc, sleeve friction fs, friction ratio Rf,
etc. and soil types are extracted. These parameters are con-
sidered as soil properties in this research. The Z coordinate
of the CPT indicates the elevation of the terrain before con-
struction of the road. The current elevation of the road is de-
rived from the Digital Elevation Model (DEM), which is ex-
tracted from the LiDAR point cloud of the highway. Assum-
ing a uniform thickness of 90 cm for the surface, base, sub-
base and sub-grade of the road (based on the road construc-
tion standards), the difference between the current (DEM)
and old elevation (CPT) indicates the amount of removed or
added stress due to excavation or backfilling. The SAR im-
ages are processed by combining a sequence of radar images
(Terrasar-X with the spatial resolution of 3.00 m × 2.80 m
and revisit period of 11 d) from 2016 till 2019 to measure the
ground deformation using D-InSAR techniques. The main
product is the time series representing the amount of defor-
mation with respect to the first acquisition. Each of the time
series is decomposed to a linear trend over the 3-year period
and a seasonal pattern using a least squares linear regression
model. For each CPT measurement, the nearest InSAR mea-
surement (within a distance of less than 5 m) is extracted as
the deformation time series corresponding to that CPT point.

2.2 Step 3: Correlations and Similarities between Soil
Properties, Loading/Unloading and Deformation

In this step, the similarities and correlations between soil
properties, loading/unloading history and the resulting defor-
mation are being studied. Serra and Arcos (2014) presents
number of similarity measures for clustering and classifica-
tion of time series. The qc and fs profiles are series of mea-
surements in depth and can be treated as time series. Hence,
we can use the similarity measures discussed in Serra and
Arcos (2014) to measure the similarities of qc and fs profiles

on the road. In this research, the hypothesis is that if two CPT
measurements are similar in terms of both qc and fs profiles
and the loading history is the same, the deformation behav-
ior should be the same. Here, we used the simplest similarity
measure, i.e. the Euclidean (Serra and Arcos, 2014) distance
between the time series, which is computationally efficient
and suitable for comparison of samples that are at exactly
the same depth location. By our definition, two CPT are con-
sidered similar if the sum of normalized distances of their
qc and fs is less than 0.2 and the difference between their
loading/unloading stress is less than 10 kPa (these thresholds
are based on expert’s knowledge and trial and error). If the
aforementioned hypothesis is correct, the deformation rate
of a reference point in the dataset should be more or less the
same as the mean of the linear rates of deformation of the
similar points (with similar CPT profiles). The coefficient of
determination between the deformation rate of the reference
point and the similar points is regarded as a measure that de-
scribes the degree that the deformation rate can be taken as
a function of soil properties (CPT measurements) and load-
ing/unloading stress.

2.3 Step 4: Feature Extraction and Modeling Using
Machine Learning

In this step, first we extract quantitative descriptors from CPT
profiles. (Coerts, 1996) lists the possible quantitative features
and their interpretation and shortcomings for CPT segments.
Ultimately, he introduces a set of the most suitable and in-
terpretable descriptors for CPT measurements, which we use
in our case study: the Interquantile range (IQR), Indicator
of simple trend (T), Indicator of convexity or concavity (C),
Normalized number of fluctuations around the median (R)
and Sharpness of upper boundary (B). The quantitative fea-
tures are extracted from the CPT profiles to the depth of
15 m under the ground surface. The choice of 15 m is due
to the good trade-off between having the maximum possible
depth and not losing too many CPT measurements shallower
than that depth, as well as the fact that peat and clay layers
are mostly present above this depth. The loading/unloading
stress is another feature. The goal is to establish the relation-
ship between the these features and the linear rate of defor-
mation, which is predicted. In the research work of Sajadian
(2019) a qualitative as well as a qualitative Machine Learning
(ML) are shown and compared.

There are multiple ML algorithms one could use
(Breiman, 2001). However, there are no previous studies for
our case study, so the choice of the proper set of features
is unknown. The ML algorithm should provide information
about the significance of each of the features and the es-
tablished model through the ML algorithm should be in-
terpretable. Taking this into account we selected tree-based
algorithms, which satisfy all these conditions, which are
Gradient-Boosting and Random Forest (Hastie et al., 2005).
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Figure 1. Overall methodology applied in this paper.

3 Case Study and Results

The required data for modeling land deformation signif-
icantly depends on the case study. In this research, the
newly constructed part of A4 highway connecting Delft
to Schiedam (the Netherlands) is studied (https://www.
wegenwiki.nl/A4_(Nederland), last access: October 2019).
For the sake of brevity, we will only present the results of
the last part of step 4 of the methodology. For the complete
study readers are referred to Sajadian (2019).

The soil properties and loading/unloading history influ-
ence the rate of deformation in different directions. The com-
plicated interactions between the driving mechanisms sug-
gests that the relationship is definitely not linear to be recog-
nized by the simple correlations. This led us to using ML to
model the relationship between these datasets. The location
under study is about 5 km long and and has 368 CPT’s for
which deformation measurement points are available.

Figure 2 shows the quantitative features extracted, at dif-
ferent depths, for one CPT. These features are the descriptors
of the segments of every 5 m. In this research, rather than be-
ing interested in importance of each of these descriptors in
estimating the target value, we are more interested in investi-
gating which of the profiles and which depth of measurement
is more significant in estimating the linear rate of deforma-
tion.

For the A4 highway case study, and using the features
mentioned above, the two ML algorithms are tested on the
dataset: Gradient-Boosting and Random Forest. Eighty per-
cent of the measurements are taken for training each of the
algorithms and 20 % of the measurements are used to validate
the results. Table 1 summarizes the performance metrics for
each method.

As shown in Table 1, the outcomes of the two ML algo-
rithms are very similar and the histograms show a very simi-
lar distribution. The estimated deformation rates are between
−1 and 4 mm yr−1, meanwhile the measured values are be-
tween −7 and 8 mm yr−1 – see Fig. 3. This means that both
algorithms fail to detect subsiding patterns and extreme heav-
ing patterns. The errors (mostly between −3 and 3 mm yr−1)
could be explained by the fact that the data set is imbalanced

(15 % subsiding and 85 % heaving), the total number of data
points is not enough and/or the features selected are not rep-
resentative of the observed deformation.

Nevertheless, both ML algorithms give consistent results
in terms of generalization performance and feature impor-
tance with negligible differences. When we look at the sig-
nificance of each feature on predicting the target deforma-
tion rate, both algorithms showed that features extracted from
CPT’s qc are the most dominant ones. After this, the load-
ing/unloading stresses are also important.

4 Conclusions

In this research, the main focus was studying and modeling
the deformation on roads due to loading/unloading and based
on soil characterization using ML algorithms. The desired
output of the research was an ML model trained by stan-
dard data that enabled the prediction of surface movements
of roads susceptible to soil deformation. The case study was
the newly constructed part of A4 highway (Delft-Schiedam)
in the Netherlands.

It was concluded, for this case study, that:

– the available data sources on soil data do not provide
all the necessary information, e.g. information on pres-
ence of certain expansive minerals or information about
ground water conditions in the soil are missing. Here,
only the latest (simplified) loading/unloading step was
estimated while information on the previous stress con-
ditions (which were discontinuous in time) were miss-
ing;

– the InSAR measurements only provided information
about the first three years after the construction of the
road and, therefore, the information on the amount of
deformation was limited to this time span;

– and finally, although this case study showed diverse de-
formation behavior (both heave and subsidence), which
made it interesting for investigating more influential pa-
rameters of road deformation, it presented another limi-
tation. i.e. the diversity of the behavior in this case study
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Figure 2. Example of the quantitative features extracted from one CPT, per depth level: shallow, middle and deep.

Table 1. Performance metrics “Average over 10-folds” and “Best Performing Model” of Gradient Boosting and Random Forest ML algo-
rithms with quantitative features.

Gradient Boosting Random Forest

Performance metrics: Averaged Best Averaged Best

Mean Absolute Error (mm yr−1) 1.1 1.1 1.2 1.2
Mean Squared Error (mm yr−1) 2.4 2.2 2.6 2.5
Root Mean Squared Error (mm2 yr−2) 1.6 1.5 1.6 1.6
R2 0.5 0.5 0.4 0.5

Figure 3. Deformation rates in mm yr−1 for the case study. (a) The true rates of deformation. (b) The estimated rates of deformation of
Gradient Boosting model with quantitative features. (c) The error of estimated rates.
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was due to the special construction history and therefore
it could not be easily generalized to the other roads.

In this study, the trained ML algorithm, rather than pre-
senting a general relationship between InSAR data and CPT
data, helped to investigate the effectiveness of the gathered
data in explaining the studied phenomena. The results this re-
search study could be improved by adding more data points
and features as well as more accurate boundary conditions.
This could help to explain the diverse deformation pattern of
A4 highway.
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