Articles | Volume 382
https://doi.org/10.5194/piahs-382-277-2020
https://doi.org/10.5194/piahs-382-277-2020
Pre-conference publication
 | 
22 Apr 2020
Pre-conference publication |  | 22 Apr 2020

Ground motion areas detection (GMA-D): an innovative approach to identify ground deformation areas using the SAR-based displacement time series

Roberta Bonì, Claudia Meisina, Linda Poggio, Alessandro Fontana, Giulia Tessari, Paolo Riccardi, and Mario Floris

Related authors

Wavelet analysis of land subsidence time-series: Madrid Tertiary aquifer case study
Roberto Tomás, José Luis Pastor, Marta Béjar-Pizarro, Roberta Bonì, Pablo Ezquerro, José Antonio Fernández-Merodo, Carolina Guardiola-Albert, Gerardo Herrera, Claudia Meisina, Pietro Teatini, Francesco Zucca, Claudia Zoccarato, and Andrea Franceschini
Proc. IAHS, 382, 353–359, https://doi.org/10.5194/piahs-382-353-2020,https://doi.org/10.5194/piahs-382-353-2020, 2020
Understanding the dynamic behaviour for the Madrid aquifer (Spain): insights from the integration of A-DInSAR and 3-D groundwater flow and geomechanical models
Roberta Bonì, Claudia Meisina, Pietro Teatini, Francesco Zucca, Claudia Zoccarato, Andrea Franceschini, Pablo Ezquerro, Marta Béjar-Pizarro, José A. Fernández-Merodo, Carolina Guardiola-Albert, José L. Pastor, Roberto Tomás, and Gerardo Herrera
Proc. IAHS, 382, 409–414, https://doi.org/10.5194/piahs-382-409-2020,https://doi.org/10.5194/piahs-382-409-2020, 2020
Short summary
Application of multi-sensor advanced DInSAR analysis to severe land subsidence recognition: Alto Guadalentín Basin (Spain)
R. Bonì, G. Herrera, C. Meisina, D. Notti, M. Béjar-Pizarro, F. Zucca, P. J. González, M. Palano, R. Tomás, J. Fernández, J. A. Fernández-Merodo, J. Mulas, R. Aragón, C. Guardiola-Albert, and O. Mora
Proc. IAHS, 372, 45–48, https://doi.org/10.5194/piahs-372-45-2015,https://doi.org/10.5194/piahs-372-45-2015, 2015
Short summary
PSI-based methodology to land subsidence mechanism recognition
R. Bonì, C. Meisina, C. Perotti, and F. Fenaroli
Proc. IAHS, 372, 357–360, https://doi.org/10.5194/piahs-372-357-2015,https://doi.org/10.5194/piahs-372-357-2015, 2015
Short summary

Cited articles

Allen, D. W.: Getting to know ArcGIS modelBuilder, Esri Press, 336 pp., 2011. 
Barra, A., Solari, L., Béjar-Pizarro, M., Monserrat, O., Bianchini, S., Herrera, G., Crosetto, M., Sarro, R., González-Alonso, E., Mateos, R. M., Ligüerzana, S., López , C., and Moretti, S. : A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images, Remote Sens., 9, 1002, https://doi.org/10.3390/rs9101002, 2017.  
Bonì, R., Pilla, G., and Meisina, C.: Methodology for detection and interpretation of ground motion areas with the A-DInSAR time series analysis, Remote Sens., 8, 103–126, https://doi.org/10.3390/rs808, 2016. 
Bonì, R., Bosino, A., Meisina, C., Novellino, A., Bateson, L., and McCormack, H.: A methodology to detect and characterize uplift phenomena in urban areas using Sentinel-1 data, Remote Sens., 10, 144–166, 2018. 
Castiglioni, G. B.: Geomorphology of the Po plain, Comitato glaciologico italiano, Suppf. Geogr. Fis. Dinam. Qual. III, T.3, 7–20, 12 figg., 1999. 
Download
Short summary
In this work, an innovative methodology to generate the automatic ground motion areas mapping is presented. The procedure was tested using different sensors such as ERS-1/2, ENVISAT, COSMO-SkyMed and Sentinel-1 over an area of about 500 km2 in the Venetian-Friulian coastal Plain (NE Italy). The resulting mapping allows to detect priority areas where to address further in situ investigations such as to verify the presence of localized buried landforms.