Articles | Volume 382
https://doi.org/10.5194/piahs-382-183-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-382-183-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Permafrost seasonal surface changes revealed from Sentinel-1 InSAR time-series, Yamal peninsula
Kanayim Teshebaeva
CORRESPONDING AUTHOR
VU Amsterdam, Department of Earth Sciences, Earth and Climate
Cluster, Amsterdam, 1081 HV, the Netherlands
Ko J. van Huissteden
VU Amsterdam, Department of Earth Sciences, Earth and Climate
Cluster, Amsterdam, 1081 HV, the Netherlands
Alexander V. Puzanov
Institute for Water and Environmental Problems, Siberian Branch of the RAS, Barnaul, Russia
Dmitry N. Balykin
Institute for Water and Environmental Problems, Siberian Branch of the RAS, Barnaul, Russia
Anton I. Sinitsky
Arctic Research Center of the Yamal-Nenets Autonomous District,
Salekhard, Russia
Nelley Kovalevskaya
Institute for Water and Environmental Problems, Siberian Branch of the RAS, Barnaul, Russia
Related authors
No articles found.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Aleksandr Andreevich Tskhai, Aleksandr Vasilievich Puzanov, Nelley Mikhailovna Kovalevskaya, and Vladimir Viktorovich Kirillov
Proc. IAHS, 383, 375–379, https://doi.org/10.5194/piahs-383-375-2020, https://doi.org/10.5194/piahs-383-375-2020, 2020
Short summary
Short summary
An integrated monitoring approach has developed for the Ob river. The novelty is in transition to high-performance computing under processing of remote sensing data for the Gulf of the Kara Sea the Ob Bay and modeling of aquatic ecosystem degradation. The long-term trend in the development for the ecosystem of the Novosibirsk reservoir in the Ob river basin are explained by the structural-dynamic modeling.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Henk-Jan van der Kolk, Monique M. P. D. Heijmans, Jacobus van Huissteden, Jeroen W. M. Pullens, and Frank Berendse
Biogeosciences, 13, 6229–6245, https://doi.org/10.5194/bg-13-6229-2016, https://doi.org/10.5194/bg-13-6229-2016, 2016
Short summary
Short summary
Changes in tundra vegetation structure may amplify Arctic climate warming. Our simulations with a new tundra vegetation model suggest that precipitation increases favour grass abundance, whereas warming favours shrub dominance. However, abrupt permafrost thaw initiating wetland formation leads to grass dominance. Our simulations show that a wetter tundra, due to increased precipitation or abrupt permafrost thaw, could result in local shrub decline instead of the widely expected shrub expansion.
C. Metzger, P.-E. Jansson, A. Lohila, M. Aurela, T. Eickenscheidt, L. Belelli-Marchesini, K. J. Dinsmore, J. Drewer, J. van Huissteden, and M. Drösler
Biogeosciences, 12, 125–146, https://doi.org/10.5194/bg-12-125-2015, https://doi.org/10.5194/bg-12-125-2015, 2015
Short summary
Short summary
To identify site specific differences in CO2-related processes in open peatlands, we calibrated a process oriented model to fit to detailed measurements of carbon fluxes and compared the resulting parameter ranges between the sites. For most processes a common configuration could be applied. Site specific differences were identified for soil respiration coefficients, plant radiation-use efficiencies and plant storage fractions for spring regrowth.
A. Budishchev, Y. Mi, J. van Huissteden, L. Belelli-Marchesini, G. Schaepman-Strub, F. J. W. Parmentier, G. Fratini, A. Gallagher, T. C. Maximov, and A. J. Dolman
Biogeosciences, 11, 4651–4664, https://doi.org/10.5194/bg-11-4651-2014, https://doi.org/10.5194/bg-11-4651-2014, 2014
Y. Mi, J. van Huissteden, F. J. W. Parmentier, A. Gallagher, A. Budishchev, C. T. Berridge, and A. J. Dolman
Biogeosciences, 11, 3985–3999, https://doi.org/10.5194/bg-11-3985-2014, https://doi.org/10.5194/bg-11-3985-2014, 2014
Y. Mi, J. van Huissteden, and A. J. Dolman
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-3603-2014, https://doi.org/10.5194/tcd-8-3603-2014, 2014
Revised manuscript not accepted
Cited articles
Astakhov, V.: Pleistocene ice limits in the Russian northern lowlands, Quat.
Glaciat. Chronol. Part, 1, 309–319, 2004.
Astakhov, V.: Ice margins of northern Russia revisited, in: Developments in
Quaternary Sciences, edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D., Vol. 15, 323–336, Elsevier, 2011.
Chen, F., Lin, H., Zhou, W., Hong, T., and Wang, G.: Surface deformation
detected by ALOS PALSAR small baseline SAR interferometry over permafrost
environment of Beiluhe section, Tibet Plateau, China, Remote Sens. Environ.,
138, 10–18, 2013.
Chuvilin, E. M., Yakushev, V. S., and Perlova, E. V: Gas and possible gas
hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West
Siberia, Polarforschung, 68, 215–219, 2000.
Colesanti, C., Ferretti, A., Locatelli, R., Novali, F., and Savio, G.:
Permanent scatterers: precision assessment and multi-platform analysis, in:
IGARSS 2003, 2003 IEEE Int. Geosci. Remote Sens.
Symp., Proceedings (IEEE Cat. No. 03CH37477), 2, 1193–1195, 2003.
French, H. M: The periglacial enviroment, 4th Edition, John Wiley & Sons, 544, 2017.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147,
2018.
Kizyakov, A., Zimin, M., Sonyushkin, A., Dvornikov, Y., Khomutov, A., and
Leibman, M.: Comparison of Gas Emission Crater Geomorphodynamics on Yamal
and Gydan Peninsulas (Russia), Based on Repeat Very-High-Resolution
Stereopairs, Remote Sens., 9, 1023, 2017.
Leibman, M. O., Kizyakov, A. I., Plekhanov, A. V., and Streletskaya, I. D.:
New permafrost feature–dep crater in Central Yamal (West Siberia, Rusia) as
a response to local climate fluctuations, Geogr. Environ. Sustain., 7,
68–79, 2014.
Liu, J., Kang, S., Gong, T., and Lu, A.: Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet, Hydrol. Earth Syst. Sci., 14, 481–489, https://doi.org/10.5194/hess-14-481-2010, 2010.
Liu, L., Schaefer, K. M., Chen, A. C., Gusmeroli, A., Zebker, H. A., and
Zhang, T.: Remote sensing measurements of thermokarst subsidence using
InSAR, J. Geophys. Res.-Earth Surf., 120, 1935–1948, 2015.
Liu, X., Guo, Y., Hu, H., Sun, C., Zhao, X., and Wei, C.: Dynamics and
controls of CO2 and CH4 emissions in the wetland of a montane permafrost
region, northeast China, Atmos. Environ., 122, 454–462, 2015.
Nauta, A. L., Heijmans, M. M. P. D., Blok, D., Limpens, J., Elberling, B.,
Gallagher, A., Li, B., Petrov, R. E., Maximov, T. C., and Van Huissteden, J.:
Permafrost collapse after shrub removal shifts tundra ecosystem to a methane
source, Nat. Clim. Chang., 5, 67–70, 2015.
Olenchenko, V. V., Sinitsky, A. I., Antonov, E. Y., Eltsov, I. N.,
Kushnarenko, O. N., Plotnikov, A. E., Potapov, V. V., and Epov, M. I.: Results
of geophysical surveys of the area of “Yamal crater”, the new geological
structure, Kriosf. Zemli, 19, 84–95, 2015.
Raynolds, M. K., Walker, D. A., Ambrosius, K. J., Brown, J., Everett, K. R.,
Kanevskiy, M., Kofinas, G. P., Romanovsky, V. E., Shur, Y., and Webber, P.
J.: Cumulative geoecological effects of 62 years of infrastructure and
climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield,
Alaska, Global Change Biol., 20, 1211–1224, 2014.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., and Lawrence, D. M.:
Climate change and the permafrost carbon feedback, Nature, 520, 171–179,
2015.
Short, N., LeBlanc, A.-M., Sladen, W., Oldenborger, G., Mathon-Dufour, V.,
and Brisco, B.: RADARSAT-2 D-InSAR for ground displacement in permafrost
terrain, validation from Iqaluit Airport, Baffin Island, Canada, Remote
Sens. Environ., 141, 40–51, 2014.
van Thienen-Visser, K., Pruiksma, J. P., and Breunese, J. N.: Compaction and
subsidence of the Groningen gas field in the Netherlands, Proc. Int. Assoc.
Hydrol. Sci., 372, 367–373, 2015.
Ulmishek, G. F.: Petroleum geology and resources of the West Siberian Basin,
Russia, US Department of the Interior, US Geological Survey Reston,
Virginia, 2003.
Volkova, V. S.: Geologic stages of the paleogene and neogene evolution of
the Arctic shelf in the Ob'region (West Siberia), Russ. Geol. Geophys.,
55, 483–494, 2014.