Articles | Volume 382
https://doi.org/10.5194/piahs-382-173-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-382-173-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multiscale approach for detection and mapping differential subsidence using multi-platform InSAR products
Dario E. Solano-Rojas
CORRESPONDING AUTHOR
Universidad Nacional Autónoma de México, Facultad de
Ingeniería, Mexico City, 04510, Mexico
Shimon Wdowinski
Florida International University, Earth & Environment, Miami, FL
33199, USA
Enrique Cabral-Cano
Universidad Nacional Autónoma de México, Instituto de
Geofísica, Mexico City, 04150, Mexico
Batuhan Osmanoglu
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Emre Havazli
University of Miami, Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
Jesus Pacheco-Martínez
Universidad Autónoma de Aguascalientes, Aguascalientes, 20130,
Mexico
Related authors
Dario Solano-Rojas, Enrique Cabral-Cano, Enrique Fernández-Torres, Emre Havazli, Shimon Wdowinski, and Luis Salazar-Tlaczani
Proc. IAHS, 382, 683–687, https://doi.org/10.5194/piahs-382-683-2020, https://doi.org/10.5194/piahs-382-683-2020, 2020
Short summary
Short summary
Mexico City, a large megacity with over 21 million inhabitants, is exposed to several hazards, including land subsidence, earthquakes, and flooding. Our data makes it plausible for an earthquake triggering case that temporarily accelerated the subsidence rate in the metropolitan area as a result of the September 2017 earthquakes that affected Mexico City. Furthermore, the triggering effect induced rapid slip along previously developed shallow faults associated with subsidence.
Enrique Fernández-Torres, Enrique Cabral-Cano, Dario Solano-Rojas, Emre Havazli, and Luis Salazar-Tlaczani
Proc. IAHS, 382, 583–587, https://doi.org/10.5194/piahs-382-583-2020, https://doi.org/10.5194/piahs-382-583-2020, 2020
Short summary
Short summary
Land subsidence in Mexico City results from a combination of groundwater resources' overexploitation and the local stratigraphic nature. A Sentinel-1 based subsidence analysis velocity map was used as the basis for a population density weighted land subsidence correlation analysis. Our Land Subsidence Risk assessment indicates that 15.43 % of the population of Mexico City live in intermediate, high and very-high risk zones which corresponds to 1 358 873 inhabitants.
E. Macorps, M. Jo, B. Osmanoglu, and R. A. Albayrak
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 175–182, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-175-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-175-2023, 2023
B. Osmanoglu, S. A. Huang, C. A. Jones, B. Scheuchl, A. Khazendar, J. Sauber, K. Tymofyeyeva, and M. J. Jo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 225–232, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-225-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-225-2023, 2023
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Shimon Wdowinski, Talib Oliver-Cabrera, and Simone Fiaschi
Proc. IAHS, 382, 207–211, https://doi.org/10.5194/piahs-382-207-2020, https://doi.org/10.5194/piahs-382-207-2020, 2020
Short summary
Short summary
Over the past decade, several coastal communities in southeast Florida have experienced a significant increase in flooding frequency. In a recent project, funded by the state of Florida, we monitor coastal subsidence in southeast Florida using GPS and InSAR observations, in order to evaluate the contribution of local subsidence to the increased coastal flooding hazard.
Talib Oliver-Cabrera, Shimon Wdowinski, Sarah Kruse, and Tonian Robinson
Proc. IAHS, 382, 155–159, https://doi.org/10.5194/piahs-382-155-2020, https://doi.org/10.5194/piahs-382-155-2020, 2020
Short summary
Short summary
Sinkhole activity in west-central Florida is a major hazard for people and property. In this work, we use radar interferometry acquired over a selected region in Hernando County in west-central Florida to observe small localized deformation possibly caused by sinkhole activity. Results reveal several areas of localized subsidence at rates ranging from −3.7 to −4.9 mm/yr.
Dario Solano-Rojas, Enrique Cabral-Cano, Enrique Fernández-Torres, Emre Havazli, Shimon Wdowinski, and Luis Salazar-Tlaczani
Proc. IAHS, 382, 683–687, https://doi.org/10.5194/piahs-382-683-2020, https://doi.org/10.5194/piahs-382-683-2020, 2020
Short summary
Short summary
Mexico City, a large megacity with over 21 million inhabitants, is exposed to several hazards, including land subsidence, earthquakes, and flooding. Our data makes it plausible for an earthquake triggering case that temporarily accelerated the subsidence rate in the metropolitan area as a result of the September 2017 earthquakes that affected Mexico City. Furthermore, the triggering effect induced rapid slip along previously developed shallow faults associated with subsidence.
Enrique Fernández-Torres, Enrique Cabral-Cano, Dario Solano-Rojas, Emre Havazli, and Luis Salazar-Tlaczani
Proc. IAHS, 382, 583–587, https://doi.org/10.5194/piahs-382-583-2020, https://doi.org/10.5194/piahs-382-583-2020, 2020
Short summary
Short summary
Land subsidence in Mexico City results from a combination of groundwater resources' overexploitation and the local stratigraphic nature. A Sentinel-1 based subsidence analysis velocity map was used as the basis for a population density weighted land subsidence correlation analysis. Our Land Subsidence Risk assessment indicates that 15.43 % of the population of Mexico City live in intermediate, high and very-high risk zones which corresponds to 1 358 873 inhabitants.
M.-J. Jo, B. Osmanoglu, B. Zhang, and S. Wdowinski
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 711–713, https://doi.org/10.5194/isprs-archives-XLII-3-711-2018, https://doi.org/10.5194/isprs-archives-XLII-3-711-2018, 2018
B. Zhang, S. Wdowinski, T. Oliver-Cabrera, R. Koirala, M. J. Jo, and B. Osmanoglu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2237–2244, https://doi.org/10.5194/isprs-archives-XLII-3-2237-2018, https://doi.org/10.5194/isprs-archives-XLII-3-2237-2018, 2018
B. Osmanoglu, F. J. Navarro, R. Hock, M. Braun, and M. I. Corcuera
The Cryosphere, 8, 1807–1823, https://doi.org/10.5194/tc-8-1807-2014, https://doi.org/10.5194/tc-8-1807-2014, 2014
Cited articles
Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., and Laczniak, R.
J.: Sensing the ups and downs of Las Vegas: InSAR reveals structural control
of land subsidence and aquifer-system deformation, Geology, 27, 483–486,
1999.
Avila-Olivera, J. A. and Garduño-Monroy, V. H.: A GPR study of
subsidence-creep-fault processes in Morelia, Michoacán, Mexico, Eng.
Geol., 100, 69–81, https://doi.org/10.1016/j.enggeo.2008.03.003, 2008.
Brunori, C. A., Bignami, C., Albano, M., Zucca, F., Samsonov, S., Groppelli, G., Norini, G., Saroli, M. and Stramondo, S.: Land subsidence, ground fissures and buried faults: InSAR monitoring of Ciudad Guzmán (Jalisco, Mexico), Remote Sens., 7, 8610–8630, https://doi.org/10.3390/rs70708610, 2015.
Cabral-Cano, E., Dixon, T. H., Miralles-Wilhelm, F., Díaz-Molina, O.,
Sánchez-Zamora, O., and Carande, R. E.: Space geodetic imaging of rapid
ground subsidence in Mexico City, Bull. Geol. Soc. Am., 120,
1556–1566, https://doi.org/10.1130/B26001.1, 2008.
Centro Nacional de Prevención de Desastres (CENAPRED): Fracturas en la
Ciudad de Mexico, Atlas Nac. Riesgos, available at:
http://www.atlasnacionalderiesgos.gob.mx/archivo/visor-capas.html (last access:
20 August 2005), 2017.
Chaussard, E., Wdowinski, S., Cabral-Cano, E., and Amelung, F.: Land
subsidence in central Mexico detected by ALOS InSAR time-series, Remote
Sens. Environ., 140, 94–106, https://doi.org/10.1016/j.rse.2013.08.038, 2014.
Chaussard, E., Milillo, P., Bürgmann, R., Perissin, D., Fielding, E. J.,
and Baker, B.: Remote Sensing of Ground Deformation for Monitoring
Groundwater Management Practices: Application to the Santa Clara Valley
During the 2012–2015 California Drought, J. Geophys. Res.-Sol. Ea.,
122, 8566–8582, https://doi.org/10.1002/2017JB014676, 2017.
European Space Agency: Sentinel-1 data archieve, available at: https://scihub.copernicus.eu/dhus/#/home (last access: 20 August 2002), 2020.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D. E.: The shuttle radar topography mission, Rev. Geophys., 45, 1–43, https://doi.org/10.1029/2005RG000183, 2007.
Gambolati, G. and Teatini, P.: Geomechanics of subsurface water withdrawal
and injection, Water Resour. Res., 51, 3922–3955,
https://doi.org/10.1002/2014WR016841, 2015.
German Aeroespace Center: TerraSAR-X data archieve, available at: https://terrasar-x-archive.terrasar.com/ (last access: 20 April 2002), 2020.
Hoffmann, J., Zebker, H. A., Galloway, D. L., and Amelung, F.: Seasonal
subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic
aperture radar interferometry, Water Resour. Res., 37, 1551–1566,
https://doi.org/10.1029/2000WR900404, 2001.
Hooper, A., Segall, P., and Zebker, H.: Persistent scatterer interferometric
synthetic aperture radar for crustal deformation analysis, with application
to Volcan Alcedo, Galapagos, J. Geophys. Res.-Sol. Ea., 112, 1–21,
https://doi.org/10.1029/2006JB004763, 2007.
Italian Space Agency: COSMO-SkyMed data archieve, available at: http://catalog.e-geos.it/ (last access: 20 March 2009), 2020.
Japan Aerospace Exploration Agency: ALOS PALSAR data archieve (through Vertex), 2020.
Kampes, B. M., Hanssen, R. F., and Perski, Z.: Radar interferometry with
public domain tools, Eur. Sp. Agency, Special Publ. ESA SP, 550, 59–68,
2004.
Pacheco-Martínez, J., Cabral-Cano, E., Wdowinski, S.,
Hernández-Marín, M., Ortiz-Lozano, J. Á., and
Zermeño-de-León, M. E.: Application of InSAR and Gravimetry for Land
Subsidence Hazard Zoning in Aguascalientes, Mexico, Remote Sens., 7,
17035–17050, https://doi.org/10.3390/rs71215868, 2015.
Semple, A. G., Pritchard, M. E., and Lohman, R. B.: An incomplete inventory
of suspected human-induced surface deformation in North America detected by
satellite interferometric synthetic-aperture radar, Remote Sens., 9,
1–26, https://doi.org/10.3390/rs9121296, 2017.
Solano-Rojas, D.: Geological Hazard Assessments for Mexico City and its
Surroundings Based on Synthetic Aperture Radar Interferometry (InSAR)
Observations, University of Miami, available at:
https://scholarlyrepository.miami.edu/oa_dissertations/2157 (last access: 22 March 2020),
2018.
Yunjun, Z., Fattahi, H., and Amelung, F.: Small baseline InSAR time series
analysis: unwrapping error correction and noise reduction, 133, 104331,
https://doi.org/10.1016/j.cageo.2019.104331, 2019.
Short summary
Differential subsidence produces damage to infrastructure and geological media. However, detecting and mapping differential subsidence at a regional scale using satellite date becomes challenging when considering the large amount of displacement products that can be produced. Here we show some examples of our work with products at different scale and focused on different aspects of differential subsidence.
Differential subsidence produces damage to infrastructure and geological media. However,...