Articles | Volume 381
https://doi.org/10.5194/piahs-381-113-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-381-113-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling future hydroclimatic effects on the Coregonus migratorius spawning migration in the Selenga River and Lake Baikal
Water Problems Institute of the Russian Academy of Sciences, Moscow, 119333, Russia
Tatiana Millionshchikova
Water Problems Institute of the Russian Academy of Sciences, Moscow, 119333, Russia
Sergey Chalov
Faculty of Geography, Moscow State University, Moscow, 119991, Russia
Related authors
Alexander Gelfan, Vsevolod Moreydo, Yury Motovilov, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 2073–2089, https://doi.org/10.5194/hess-22-2073-2018, https://doi.org/10.5194/hess-22-2073-2018, 2018
Short summary
Short summary
We describe a forecasting procedure that is based on a semi-distributed hydrological model using two types of weather ensembles for the lead time period: observed weather data, constructed on the basis of the ESP methodology, and synthetic weather data, simulated by a weather generator. We compare the described methodology with the regression-based operational forecasts that are currently in practice and show the increased informational content of the ensemble-based forecasts.
A. N. Gelfan, Yu. G. Motovilov, and V. M. Moreido
Proc. IAHS, 369, 115–120, https://doi.org/10.5194/piahs-369-115-2015, https://doi.org/10.5194/piahs-369-115-2015, 2015
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-290, https://doi.org/10.5194/essd-2024-290, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We want to understand changes to the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Adrian L. Collins, Des E. Walling, Valentin Golosov, Paolo Porto, Allen C. Gellis, Yuri Jaques da Silva, and Sergey Chalov
Proc. IAHS, 385, 489–497, https://doi.org/10.5194/piahs-385-489-2024, https://doi.org/10.5194/piahs-385-489-2024, 2024
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Navid Ghajarnia, Georgia Destouni, Josefin Thorslund, Zahra Kalantari, Imenne Åhlén, Jesús A. Anaya-Acevedo, Juan F. Blanco-Libreros, Sonia Borja, Sergey Chalov, Aleksandra Chalova, Kwok P. Chun, Nicola Clerici, Amanda Desormeaux, Bethany B. Garfield, Pierre Girard, Olga Gorelits, Amy Hansen, Fernando Jaramillo, Jerker Jarsjö, Adnane Labbaci, John Livsey, Giorgos Maneas, Kathryn McCurley Pisarello, Sebastián Palomino-Ángel, Jan Pietroń, René M. Price, Victor H. Rivera-Monroy, Jorge Salgado, A. Britta K. Sannel, Samaneh Seifollahi-Aghmiuni, Ylva Sjöberg, Pavel Terskii, Guillaume Vigouroux, Lucia Licero-Villanueva, and David Zamora
Earth Syst. Sci. Data, 12, 1083–1100, https://doi.org/10.5194/essd-12-1083-2020, https://doi.org/10.5194/essd-12-1083-2020, 2020
Short summary
Short summary
Hydroclimate and land-use conditions determine the dynamics of wetlands and their ecosystem services. However, knowledge and data for conditions and changes over entire wetlandscapes are scarce. This paper presents a novel database for 27 wetlandscapes around the world, combining survey-based local information and hydroclimatic and land-use datasets. The developed database can enhance our capacity to understand and manage critical wetland ecosystems and their services under global change.
Ekaterina P. Rets, Viktor V. Popovnin, Pavel A. Toropov, Andrew M. Smirnov, Igor V. Tokarev, Julia N. Chizhova, Nadine A. Budantseva, Yurij K. Vasil'chuk, Maria B. Kireeva, Alexey A. Ekaykin, Arina N. Veres, Alexander A. Aleynikov, Natalia L. Frolova, Anatoly S. Tsyplenkov, Aleksei A. Poliukhov, Sergey R. Chalov, Maria A. Aleshina, and Ekaterina D. Kornilova
Earth Syst. Sci. Data, 11, 1463–1481, https://doi.org/10.5194/essd-11-1463-2019, https://doi.org/10.5194/essd-11-1463-2019, 2019
Short summary
Short summary
As climate change completely restructures hydrological processes and ecosystems in alpine areas, monitoring is fundamental to adaptation. Here we present a database on more than 10 years of hydrometeorological monitoring at the Djankuat station in the North Caucasus, which is one of 30 unique world reference sites with annual mass balance series longer than 50 years. We hope it will be useful for scientists studying various aspects of hydrological processes in mountain areas.
Tatiana Millionshchikova
Proc. IAHS, 381, 107–112, https://doi.org/10.5194/piahs-381-107-2019, https://doi.org/10.5194/piahs-381-107-2019, 2019
Short summary
Short summary
The Selenga River, which takes its origin in Mongolia, contributes nearly 50% of the total inflow into Lake Baikal. Since 1996, a longest low-flow period has been observed. This paper explores the opportunities of spatially distributed process-based modeling for the assessment of possible runoff changes under climate projections in the XXI century using an ensemble of global climate models as inputs.
Sergey Chalov, Pavel Terskii, Thomas Pluntke, Ludmila Efimova, Vasiliy Efimov, Vladimir Belyaev, Anna Terskaia, Michal Habel, Daniel Karthe, and Christian Bernhofer
Proc. IAHS, 381, 7–11, https://doi.org/10.5194/piahs-381-7-2019, https://doi.org/10.5194/piahs-381-7-2019, 2019
Sergey Chalov, Valentin Golosov, Adrian Collins, and Mike Stone
Proc. IAHS, 381, 1–1, https://doi.org/10.5194/piahs-381-1-2019, https://doi.org/10.5194/piahs-381-1-2019, 2019
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Alexander Gelfan, Vsevolod Moreydo, Yury Motovilov, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 2073–2089, https://doi.org/10.5194/hess-22-2073-2018, https://doi.org/10.5194/hess-22-2073-2018, 2018
Short summary
Short summary
We describe a forecasting procedure that is based on a semi-distributed hydrological model using two types of weather ensembles for the lead time period: observed weather data, constructed on the basis of the ESP methodology, and synthetic weather data, simulated by a weather generator. We compare the described methodology with the regression-based operational forecasts that are currently in practice and show the increased informational content of the ensemble-based forecasts.
Sergey R. Chalov, Varvara O. Bazilova, and Mikhail K. Tarasov
Proc. IAHS, 375, 19–22, https://doi.org/10.5194/piahs-375-19-2017, https://doi.org/10.5194/piahs-375-19-2017, 2017
Short summary
Short summary
The Selenga River is the largest tributary of Baikal Lake, it's delta covers around 600 km2. Suspended sediment concentrations (SSC) in the Selenga river delta were modelled based on LandSat images data. The variability in suspended sediment retention during the period 1989 to 2015 was calculated. The results suggest that SSC storage in the delta is observed during high discharges, whereas export increases under lower flow conditions. The changes in seasonal patterns are explained by wetland.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
A. N. Gelfan, Yu. G. Motovilov, and V. M. Moreido
Proc. IAHS, 369, 115–120, https://doi.org/10.5194/piahs-369-115-2015, https://doi.org/10.5194/piahs-369-115-2015, 2015
Cited articles
Andres, K. J., Chien, H., and Knouft, J. H.: Hydrology induces intraspecific
variation in freshwater fish morphology under contemporary and future
climate scenarios, Sci. Total Environ., 671, 421–430,
https://doi.org/10.1016/j.scitotenv.2019.03.292, 2019.
Bączyk, A., Wagner, M., Okruszko, T., and Grygoruk, M.: Influence of
technical maintenance measures on ecological status of agricultural lowland
rivers – Systematic review and implications for river management, Sci.
Total Environ., 627, 189–199, https://doi.org/10.1016/j.scitotenv.2018.01.235, 2018.
Bazov, A. V. and Bazova, N. V.: The monitoring assessment of the Baikal omul
egg laying conditions in the Selenga river spawning grounds (lake Baikal
basin), in: Biology, biotechnics of the breeding and resources conditions of
the Coregonidae fish: Proceedings of the 7th International Applied
Scientific Workshop, 16–18 February 2010, Tyumen, Russia, 70–74, Gosrybcentr, 2010 (in Russian).
Bazov, A. V. and Bazova, N. V.: Characteristics of spawning migration of the
Baikal | Omul in the Selenga river according to long-term
observations (1920–2014), Bull. Fish. Sci., 2, 18–28, 2015.
Bazov, A. V. and Bazova, N. V.: Selenga population of the Baikal omul: the
past, the present and the future, Baikal Scientific Centre of the Siberian
Branch of the Russian Academy of Sciences, Ulan-Ude, Russia, 2016.
Bragg, O. M., Black, A. R., Duck, R. W., and Rowan, J. S.: Approaching the
physical-biological interface in rivers: a review of methods for ecological
evaluation of flow regimes, Prog. Phys. Geogr. Earth Environ., 29,
506–531, https://doi.org/10.1191/0309133305pp460ra, 2005.
Dewson, Z. S., James, A. B. W., and Death, R. G.: A review of the
consequences of decreased flow for instream habitat and macroinvertebrates,
J. North Am. Benthol. Soc., 26, 401–415, https://doi.org/10.1899/06-110.1, 2007.
Döll, P. and Zhang, J.: Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations, Hydrol. Earth Syst. Sci., 14, 783–799, https://doi.org/10.5194/hess-14-783-2010, 2010.
Fan, H., He, D., and Wang, H.: Environmental consequences of damming the
mainstream Lancang-Mekong River: A review, Earth-Sci. Rev., 146, 77–91,
https://doi.org/10.1016/J.EARSCIREV.2015.03.007, 2015.
Fenkes, M., Shiels, H. A., Fitzpatrick, J. L., and Nudds, R. L.: The
potential impacts of migratory difficulty, including warmer waters and
altered flow conditions, on the reproductive success of salmonid fishes,
Comp. Biochem. Phys. A, 193, 11–21,
https://doi.org/10.1016/j.cbpa.2015.11.012, 2016.
Frolova, N. L., Belyakova, P. A., Grigoriev, V. Y., Sazonov, A. A., Zotov,
L. V., and Jarsjö, J.: Runoff fluctuations in the Selenga River Basin,
Reg. Environ. Change, 17, 1965–1976, https://doi.org/10.1007/s10113-017-1199-0,
2017.
Gao, Y., Vogel, R. M., Kroll, C. N., Poff, N. L., and Olden, J. D.:
Development of representative indicators of hydrologic alteration, J.
Hydrol., 374, 136–147, https://doi.org/10.1016/j.jhydrol.2009.06.009, 2009.
Gelfan, A. N. and Millionschikova, T. D.: Validation of a Hydrological Model
Intended for Impact Study: Problem Statement and Solution Example for
Selenga River Basin, Suppl. 1, Water Resour., 45, S90–S101, 2018.
Gelfan, A. N., Semenov, V. A., Gusev, E., Motovilov, Y., Nasonova, O., Krylenko, I., and Kovalev, E.: Large-basin hydrological response to climate model outputs: uncertainty caused by internal atmospheric variability, Hydrol. Earth Syst. Sci., 19, 2737–2754, https://doi.org/10.5194/hess-19-2737-2015, 2015.
Gelfan, A. N., Gustafsson, D., Motovilov, Y., Arheimer, B., Kalugin, A.,
Krylenko, I., and Lavrenov, A.: Climate change impact on the water regime of
two great Arctic rivers: modeling and uncertainty issues, Clim. Change,
141, 499–515, https://doi.org/10.1007/s10584-016-1710-5, 2017.
Gillenwater, D., Granata, T., and Zika, U.: GIS-based modeling of spawning
habitat suitability for walleye in the Sandusky River, Ohio, and
implications for dam removal and river restoration, Ecol. Eng., 28, 311–323,
https://doi.org/10.1016/j.ecoleng.2006.08.003, 2006.
Goode, J. R., Luce, C. H., and Buffington, J. M.: Enhanced sediment delivery
in a changing climate in semi-arid mountain basins: Implications for water
resource management and aquatic habitat in the northern Rocky Mountains,
Geomorphology, 139–140, 1–15, https://doi.org/10.1016/J.GEOMORPH.2011.06.021, 2012.
Goto, D., Hamel, M. J., Hammen, J. J., Rugg, M. L., Pegg, M. A., and Forbes,
V. E.: Spatiotemporal variation in flow-dependent recruitment of long-lived
riverine fish: Model development and evaluation, Ecol. Modell., 296, 79–92,
https://doi.org/10.1016/j.ecolmodel.2014.10.026, 2015.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Hendry, K., Cragg-Hine, D., O'Grady, M., Sambrook, H., and Stephen, A.:
Management of habitat for rehabilitation and enhancement of salmonid stocks,
Fish. Res., 62, 171–192, https://doi.org/10.1016/S0165-7836(02)00161-3, 2003.
Hockley, F. A., Wilson, C. A. M. E., Brew, A., and Cable, J.: Fish responses
to flow velocity and turbulence in relation to size, sex and parasite load,
J. R. Soc. Interface, 11, 20130814, https://doi.org/10.1098/rsif.2013.0814, 2014.
IPCC: Climate Change 2013 – The Physical Science Basis, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp., 2014.
Johnson, A. C., Acreman, M. C., Dunbar, M. J., Feist, S. W., Giacomello, A.
M., Gozlan, R. E., Hinsley, S. A., Ibbotson, A. T., Jarvie, H. P., Jones, J.
I., Longshaw, M., Maberly, S. C., Marsh, T. J., Neal, C., Newman, J. R.,
Nunn, M. A., Pickup, R. W., Reynard, N. S., Sullivan, C. A., Sumpter, J. P.,
and Williams, R. J.: The British river of the future: How climate change and
human activity might affect two contrasting river ecosystems in England,
Sci. Total Environ., 407, 4787–4798,
https://doi.org/10.1016/J.SCITOTENV.2009.05.018, 2009.
Karthe, D., Kasimov, N., Chalov, S., Shinkareva, G., Malsy, M., Menzel, L., Theuring, P., Hartwig, M., Schweitzer, C., Hofmann, J., Priess, J., and Lychagin, M.: Integrating Multi-Scale Data For The Assessment Of Water Availability And Quality In The Kharaa–Orkhon–Selenga River System, Geogr. Environ. Sustain., 3, 65–86, https://doi.org/10.24057/2071-9388-2014-7-3-40-49, 2014.
Karthe, D., Chalov, S., Moreido, V., Pashkina, M., Romanchenko, A.,
Batbayar, G., Kalugin, A., Westphal, K., Malsy, M., and Flörke, M.:
Assessment of runoff, water and sediment quality in the Selenga River basin
aided by a web-based geoservice, Water Resour., 44, 399–416,
https://doi.org/10.1134/S0097807817030113, 2017.
Lange, S.: EartH2Observe, WFDEI and ERA-Interim data Merged and
Bias-corrected for ISIMIP (EWEMBI), GFZ Data Serv.,
https://doi.org/10.5880/pik.2016.004, 2016.
Moreido, V. M. and Kalugin, A. S.: Assessing possible changes in Selenga R.
water regime in the XXI century based on a runoff formation model, Water
Resour., 44, 390–398, https://doi.org/10.1134/S0097807817030149, 2017.
Motovilov, Y. G.: Hydrological simulation of river basins at different
spatial scales: 1. Generalization and averaging algorithms, Water Resour.,
43, 429–437, https://doi.org/10.1134/S0097807816030118, 2016.
Motovilov, Y. G., Gottschalk, L., Engeland, K., and Rodhe, A.: Validation of a
distributed hydrological model against spatial observations, Agr. Forest
Meteorol., 98–99, 257–277, https://doi.org/10.1016/S0168-1923(99)00102-1, 1999.
Nhiwatiwa, T., Dalu, T., and Brendonck, L.: Impact of irrigation based
sugarcane cultivation on the Chiredzi and Runde Rivers quality, Zimbabwe,
Sci. Total Environ., 587–588, 316–325,
https://doi.org/10.1016/j.scitotenv.2017.02.155, 2017.
Papadaki, C., Soulis, K., Muñoz-Mas, R., Martinez-Capel, F., Zogaris,
S., Ntoanidis, L., and Dimitriou, E.: Potential impacts of climate change on
flow regime and fish habitat in mountain rivers of the south-western
Balkans, Sci. Total Environ., 540, 418–428,
https://doi.org/10.1016/J.SCITOTENV.2015.06.134, 2016.
Poff, N. L. and Zimmerman, J. K. H.: Ecological responses to altered flow
regimes: A literature review to inform the science and management of
environmental flows, Freshw. Biol., 55, 194–205, https://doi.org/10.1111/j.1365-2427.2009.02272.x,
2010.
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L.,
Richter, B. D., Sparks, R. E., and Stromberg, J. C.: The Natural Flow Regime,
Bioscience, 47, 769–784, https://doi.org/10.2307/1313099, 1997.
Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P.: A Method
for Assessing Hydrologic Alteration within Ecosystems, Conserv. Biol.,
10, 1163–1174, https://doi.org/10.1046/j.1523-1739.1996.10041163.x, 1996.
Roseman, E. F., Kennedy, G. W., Boase, J., Manny, B. A., Todd, T. N., and
Stott, W.: Evidence of Lake Whitefish Spawning in the Detroit River:
Implications for Habitat and Population Recovery, J. Great Lakes Res.,
33, 397–406, https://doi.org/10.1016/S0380-1330(07)70064-3, 2007.
Schneider, C., Laizé, C. L. R., Acreman, M. C., and Flörke, M.: How will climate change modify river flow regimes in Europe?, Hydrol. Earth Syst. Sci., 17, 325–339, https://doi.org/10.5194/hess-17-325-2013, 2013.
Shrestha, R. R., Peters, D. L., and Schnorbus, M. A.: Evaluating the ability
of a hydrologic model to replicate hydro-ecologically relevant indicators,
Hydrol. Process., 28, 4294–4310, https://doi.org/10.1002/hyp.9997, 2014.
Sokolov, A. V. and Kalyagin, L. F.: General evaluation of the Baikal omul
recruitment level, in State and problems of the artificial recruitment of
the Baikal omul, IP Complex, Saint-Petersburg, Russia, 7–15, 2001.
Stagl, J. C. and Hattermann, F. F.: Impacts of Climate Change on Riverine
Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube
River and Its Major Tributaries, Water (Switzerland), 8, 566,
https://doi.org/10.3390/w8120566, 2016.
Statham, P. J.: Nutrients in estuaries – An overview and the potential
impacts of climate change, Sci. Total Environ., 434, 213–227,
https://doi.org/10.1016/J.SCITOTENV.2011.09.088, 2012.
Thompson, J. R., Laizé, C. L. R., Green, A. J., Acreman, M. C., and
Kingston, D. G.: Climate change uncertainty in environmental flows for the
Mekong River, Hydrol. Sci. J., 59, 935–954,
https://doi.org/10.1080/02626667.2013.842074, 2014.
Törnqvist, R., Jarsjö, J., Pietroń, J., Bring, A., Rogberg, P.,
Asokan, S. M., and Destouni, G.: Evolution of the hydro-climate system in the
Lake Baikal basin, J. Hydrol., 519, 1953–1962,
https://doi.org/10.1016/j.jhydrol.2014.09.074, 2014.
Voronov, M. G.: Eco-biological basis for omul recruitment efficiency
increase in the Selenga river in current conditions, Saint-Petersburg, Russia, 1993.
Wang, Y., Lei, X., Wen, X., Fang, G., Tan, Q., Tian, Y., Wang, C., and Wang,
H.: Effects of damming and climatic change on the eco-hydrological system: A
case study in the Yalong River, southwest China, Ecol. Indic.,
https://doi.org/10.1016/j.ecolind.2018.07.039, in press, 2019.
Wu, H., Chen, J., Xu, J., Zeng, G., Sang, L., Liu, Q., Yin, Z., Dai, J.,
Yin, D., Liang, J., and Ye, S.: Effects of dam construction on biodiversity:
A review, J. Clean. Prod., 221, 480–489, https://doi.org/10.1016/j.jclepro.2019.03.001,
2019.
Short summary
Specific fish species in the Lake Baikal, Coregonus migratorius, are spawning in the lake's tributaries, annualy migrating upstream. In the largest tributary, the Selenga river, the migration inversely depends on seasonal flow: the lower the discharge, the further upstream the fish can go. We explored the influence of climate change on the streamflow and on the subsequent fish migration distance, may result in spawning locations shift upstream, which is ecologically more favorable.
Specific fish species in the Lake Baikal, Coregonus migratorius, are spawning in the lake's...