Articles | Volume 380
https://doi.org/10.5194/piahs-380-55-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-380-55-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of SMADI and SWDI agricultural drought indices using remotely sensed root zone soil moisture
Instituto Hispanoluso de Investigaciones Agrarias (CIALE), University
of Salamanca (USAL), Villamayor, 37185, Spain
Ángel González-Zamora
Instituto Hispanoluso de Investigaciones Agrarias (CIALE), University
of Salamanca (USAL), Villamayor, 37185, Spain
Nilda Sánchez
Instituto Hispanoluso de Investigaciones Agrarias (CIALE), University
of Salamanca (USAL), Villamayor, 37185, Spain
José Martínez-Fernández
Instituto Hispanoluso de Investigaciones Agrarias (CIALE), University
of Salamanca (USAL), Villamayor, 37185, Spain
Related authors
No articles found.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
M. M. Salvia, N. Sánchez, M. Piles, A. Gonzalez-Zamora, and J. Martínez-Fernández
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 53–58, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-53-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-53-2020, 2020
J. Plaza, C. Palacios, M. Sánchez-García, M. Criado, J. Nieto, and N. Sánchez
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 169–175, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-169-2020, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-169-2020, 2020
Simon Zwieback, Andreas Colliander, Michael H. Cosh, José Martínez-Fernández, Heather McNairn, Patrick J. Starks, Marc Thibeault, and Aaron Berg
Hydrol. Earth Syst. Sci., 22, 4473–4489, https://doi.org/10.5194/hess-22-4473-2018, https://doi.org/10.5194/hess-22-4473-2018, 2018
Short summary
Short summary
Satellite soil moisture products can provide critical information on incipient droughts and the interplay between vegetation and water availability. However, time-variant systematic errors in the soil moisture products may impede their usefulness. Using a novel statistical approach, we detect such errors (associated with changing vegetation) in the SMAP soil moisture product. The vegetation-associated biases impede drought detection and the quantification of vegetation–water interactions.
N. Sánchez, J. Martínez-Fernández, and A. González-Zamora
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 393–398, https://doi.org/10.5194/isprs-archives-XLI-B8-393-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-393-2016, 2016
N. Sánchez, J. M. Lopez-Sanchez, B. Arias-Pérez, R. Valcarce-Diñeiro, J. Martínez-Fernández, J. M. Calvo-Heras, A. Camps, A. González-Zamora, and F. Vicente-Guijalba
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 101–107, https://doi.org/10.5194/isprs-archives-XLI-B1-101-2016, https://doi.org/10.5194/isprs-archives-XLI-B1-101-2016, 2016
Cited articles
Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.:
From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and
model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, https://doi.org/10.5194/hess-12-1323-2008, 2008.
Al Bitar, A., Kerr, Y. H., Merlin, O., Cabot, F., and Wigneron, J. P.:
Global drought index from SMOS soil moisture, IEEE Int. Geos. Remote Sens.
Symp. (IGARSS), Melbourne, Australia, 2013.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration: Guidelines for computing crop water requirements, Food
and Agric. Org. of the United Nations (FAO), Rome, Italy, 1998.
AEMet (Spanish Meteorological Agency): Climatic data of the AEMet network, available at: http://www.aemet.es, last access: 7 August 2018.
BEC (Barcelona Expert Centre): SMOS-BEC L4 surface soil moisture product, available at: http://bec.icm.csic.es/land-datasets, last access: 7 August 2018.
CESBIO (Centre d'Etudes Spatiales de la Biosphere) and CATDS (Centre Aval de Traitement des Donées
SMOS):
SMOS-CESBIO L4 root zone soil moisture product, available at: http://www.catds.fr/Products/Available-products-from-CEC-SM/L4-Land-research-products,
last access: 7 August 2018.
Changnon, S: Detecting Drought Conditions in Illinois, Illinois State Water
Survey, Champaign, Circular 169, 1987.
Chan, S. K., Bindlish, R., O' Neill, P. E., Njoku, E., Jackson, T. J.,
Colliander, A., Chen, F., Burgin, M., Dunbar, S., Piepmeier, J., Yueh, S.,
Entekhabi, D., Cosh, M. H., Caldwell, T., Walker, J., Wu, X., Berg, A.,
Rowlandson, T., Pacheco, A., McNairn, H., Thibeault, M.,
Martínez-Fernández, J., González-Zamora, Á., Seyfried, M.,
Bosch, D., Starks, P., Goodrich, D., Prueger, J., Palecki, M., Small, E. E.,
Zreda, M., Calvet, J. C., Crow, W. T., and Kerr, Y. H.: Assessment of the
SMAP passive soil moisture product, IEEE T. Geosci. Remote, 54,
4994–5007, https://doi.org/10.1109/tgrs.2016.2561938, 2016.
Ceballos, A., Scipal, K., Wagner, W., and Martínez-Fernández, J.: Validation of ERS scatterometer-derived soil moisture data in the central
part of the Duero Basin, Spain, Hydrol. Process., 19, 1549–1566, https://doi.org/10.1002/hyp.5585, 2005.
Das, N. N., Mohanty, B. P., and Njoku, E. G.: Profile soil moisture across
spatial scales under different hydroclimatic conditions, Soil Sci., 175,
315–319, https://doi.org/10.1097/SS.0b013e3181e83dd3, 2010.
Dumedah, G., Walker, J. P., and Merlin, O.: Root-zone soil moisture
estimation from assimilation of downscaled soil moisture and ocean salinity
data, Adv. Water Resour., 84, 14–22, https://doi.org/10.1016/j.advwatres.2015.07.021,
2015.
Entekhabi, D., Rodriguez-Iturbe, I., and Castelli, F.: Mutual interaction of
soil moisture state and atmospheric processes, J. Hydrol., 184, 3–17,
https://doi.org/10.1016/0022-1694(95)02965-6, 1996.
FAO: 2017 The impact of disasters and crises in agriculture and food
security, Food and Agriculture Organization of the United Nations (FAO),
Italy, 2018.
Ford, T. W., Harris, E., and Quiring, S. M.: Estimating root zone soil moisture using near-surface observations
from SMOS, Hydrol. Earth Syst. Sci., 18, 139–154, https://doi.org/10.5194/hess-18-139-2014, 2014.
González-Zamora, Á., Sánchez, N., Martínez-Fernández,
J., Gumuzzio, A., Piles, M., and Olmedo, E.: Long-term smos soil moisture
products: A comprehensive evaluation across scales and methods in the Duero
basin (Spain), Phys. Chem. Earth, 83–84, 123–136, https://doi.org/10.1016/j.pce.2015.05.009, 2015.
González-Zamora, Á., Sánchez, N., Martínez-Fernández,
J., and Wagner, W.: Root-zone plant available water estimation using the
SMOS-derived soil water index, Adv. Water Resour., 96, 339–353,
https://doi.org/10.1016/j.advwatres.2016.08.001, 2016.
Hunt, E. D., Hubbard, K. G., Wilhite, D. A., Arkebauer, T. J., and Dutcher,
A. L.: The development and evaluation of a soil moisture index,
Int. J. Climatol., 29, 747–759, https://doi.org/10.1002/joc.1749,
2009.
ITACyL (Agriculture Technological Institute of Castilla y León): Climatic data of the Inforiego network, available at: http://ww.inforiego.org,
last access: 7 August 2018a.
ITACyL (Agriculture Technological Institute of Castilla y León): Surface soil database, available at: http://suelos.itacyl.es,
last access: 7 August 2018b.
Ji, L. and Peters, A. J.: Assessing vegetation response to drought in the
northern great plains using vegetation and drought indices, Remote Sens.
Environ., 87, 85–98, https://doi.org/10.1016/S0034-4257(03)00174-3, 2003.
Kerr, Y. H., Al-Yaari, A., Rodríguez-Fernández, N., Parrens, M.,
Molero, B., Leroux, D., Bircher, S., Mahmoodi, A., Mialon, A., Richaume, P.,
Delwart, S., Al Bitar, A., Pellarin, T., Bindlish, R., Jackson, T. J.,
Rüdiger, C., Waldteufel, P., Mecklenburg, S., and Wigneron, J. P.:
Overview of SMOS performance in terms of global soil moisture monitoring
after six years in operation, Remote Sens. Environ., 180, 40–63,
https://doi.org/10.1016/j.rse.2016.02.042, 2016.
LP DAAC (Land Processes Distributed Active Archive Center): MODIS data,
https://lpdaac.usgs.gov, last access: 7 August 2018.
Martínez-Fernández, J., González-Zamora, A., Sánchez, N.,
and Gumuzzio, A.: A soil water based index as a suitable agricultural
drought indicator, J. Hydrol., 522, 265–273, https://doi.org/10.1016/j.jhydrol.2014.12.051, 2015.
Martínez-Fernández, J., González-Zamora, Á., Sánchez,
N., Gumuzzio, A., and Herrero-Jiménez, C. M.: Satellite soil moisture
for agricultural drought monitoring: Assessment of the smos derived soil
water deficit index, Remote Sens. Environ., 177, 277–286, https://doi.org/10.1016/j.rse.2016.02.064, 2016.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, Proceedings of the 8th
Conference on Applied Climatology Boston, MA, 179–183, 1993.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol.,
391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Muñoz-Sabater, J., Jarlan, L., Calvet, J. C., Bouyssel, F., and De
Rosnay, P.: From near-surface to root-zone soil moisture using different
assimilation techniques, J. Hydrometeorol., 8, 194–206,
https://doi.org/10.1175/jhm571.1, 2007.
Narasimhan, B. and Srinivasan, R.: Development and evaluation of soil
moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI)
for agricultural drought monitoring, Agr. Forest Meteorol., 133, 69–88,
https://doi.org/10.1016/j.agrformet.2005.07.012, 2005.
NSIDC DACC (National Snow and Ice Data Center Distributed Active Archive Center),:SMAP L4 soil moisture product, available at:
https://nsidc.org/data/SPL4SMGP/versions/4, last access: 7 August 2018.
Pablos, M., Martínez-Fernández, J., Sánchez, N., and
González-Zamora, Á.: Temporal and Spatial Comparison of Agricultural
Drought Indices from Moderate Resolution Satellite Soil Moisture Data over
Northwest Spain, Remote Sens., 9, 1168, https://doi.org/10.3390/rs9111168, 2017.
Palmer, W. C.: Meteorological drought, in: Research paper no. 45, edited by:
Connor, J. T. and White, R. M., U.S. Weather Bureau, Washington, DC, USA,
1965.
Palmer, W. C.: Keeping track of crop moisture conditions, nationwide: The
new crop moisture index, Weatherwise, 21, 156–161,
https://doi.org/10.1080/00431672.1968.9932814, 1968.
Panu, U. S. and Sharma, T.: Challenges in drought research: Some
perspectives and future directions, Hydrol. Sci. J., 47, S19–S30,
https://doi.org/10.1080/02626660209493019, 2002.
Paredes-Trejo, F. and Barbosa, H.: Evaluation of the SMOS-derived Soil
Water Deficit Index as agricultural drought index in northeast of Brazil,
Water, 9, 377, https://doi.org/10.3390/w9060377, 2017.
Portal, G., Vall-llossera, M., Piles, M., Camps, A., Chaparro, D., Pablos,
M., and Rossato, L.: A spatially consistent downscaling approach for SMOS
using an adaptive moving window, IEEE Int. Geosc. Remote Sens. Symp.
(IGARSS) 4151–4153, https://doi.org/10.1109/IGARSS.2017.8127915, Fort Worth, Texas,
USA, 2017.
Purcell, L. C., Sinclair, T. R., and McNew, R. W.: Drought avoidance
assessment for summer annual crops using long-term weather data research
supported in part by the united soybean board, project no. 1238, Agron. J.,
95, 1566–1576, https://doi.org/10.2134/agronj2003.1566, 2003.
Rawls, W. J., Brakensiek, D. L., and Saxtonn, K. E.: Estimation of soil
water properties, T. ASABE, 25, 1316–1320,
https://doi.org/10.13031/2013.33720, 1982.
Reichle, R. H., De Lannoy, G. J. M., Liu, Q., Ardizzone, J. V., Colliander,
A., Conaty, A., Crow, W., Jackson, T. J., Jones, L. A., Kimball, J. S.,
Koster, R. D., Mahanama, S. P., Smith, E. B., Berg, A., Bircher, S., Bosch,
D., Caldwell, T. G., Cosh, M., González-Zamora, A., Collins, C. D. H.,
Jensen, K. H., Livingston, S., Lopez-Baeza, E., Martínez-Fernández,
J., McNairn, H., Moghaddam, M., Pacheco, A., Pellarin, T., Prueger, J.,
Rowlandson, T., Seyfried, M., Starks, P., Su, Z., Thibeault, M., van der
Velde, R., Walker, J., Wu, X., and Zeng, Y.: Assessment of the SMAP level-4
surface and root-zone soil moisture product using in situ measurements, J.
Hydrometeorol., 18, 2621–2645, https://doi.org/10.1175/jhm-d-17-0063.1, 2017.
Sánchez, N., González-Zamora, Á., Piles, M., and
Martínez-Fernández, J.: A new soil moisture agricultural drought
index (SMADI) integrating MODIS and SMOS products: A case of study over the
Iberian Peninsula, Remote Sens., 8, 287, https://doi.org/10.3390/rs8040287, 2016.
Sánchez, N., González-Zamora, Á., Martínez-Fernández,
J., Piles, M., Pablos, M., Wardlow, B., Tadesse, T., and Svoboda, M. D.:
Preliminary assessment of an integrated smos and modis application for
global agricultural drought monitoring, IEEE Int. Geosc. Remote Sens. Symp.
(IGARSS), https://doi.org/10.1109/IGARSS.2017.8127374, Fort Worth, Texas, USA, 2017.
Sánchez, N., González-Zamora, Á., Martínez-Fernández,
J., Piles, M., and Pablos, M.: Integrated remote sensing approach to global
agricultural drought monitoring, Agr. Forest Meteorol., 259, 141–153,
https://doi.org/10.1016/j.agrformet.2018.04.022, 2018.
Tobin, K. J., Torres, R., Crow, W. T., and Bennett, M. E.: Multi-decadal analysis of root-zone soil moisture applying the
exponential filter across CONUS, Hydrol. Earth Syst. Sci., 21, 4403–4417, https://doi.org/10.5194/hess-21-4403-2017, 2017.
Torres, G. M., Lollato, R. P., and Ochsner, T. E.: Comparison of drought
probability assessments based on atmospheric water deficit and soil water
deficit, Agron. J., 105, 428–436, https://doi.org/10.2134/agronj2012.0295, 2013.
Wang, J., Price, K. P., and Rich, P. M.: Spatial patterns of NDVI in
response to precipitation and temperature in the central Great Plains, Int.
J. Remote Sens., 22, 3827–3844, https://doi.org/10.1080/01431160010007033, 2001.
Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture
from ers scatterometer and soil data, Remote Sens. Environ., 70, 191–207,
https://doi.org/10.1016/S0034-4257(99)00036-X, 1999.
Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating palmer drought
severity index, J. Climate, 17, 2335–2351,
https://doi.org/10.1175/1520-0442(2004)017<2335:aspdsi>2.0.co;2,
2004.
Zhang, F., Zhang, L., Wang, X., and Hung, J.: Detecting agro-droughts in
southwest of china using MODIS satellite data, J. Integr. Agr., 12,
159–168, https://doi.org/10.1016/S2095-3119(13)60216-6, 2013.