Articles | Volume 380
https://doi.org/10.5194/piahs-380-23-2018
https://doi.org/10.5194/piahs-380-23-2018
Post-conference publication
 | 
18 Dec 2018
Post-conference publication |  | 18 Dec 2018

Use of canopy coefficients obtained from satellite data to estimate evapotranspiration over high mountain Mediterranean watersheds

Elisabet Carpintero, María P. González-Dugo, Jorge Jódar, and Sergio Martos-Rosillo

Related authors

Influence of data spatial resolution in water resources management for oak-savanna distinctive vegetation patches
Ana Andreu, Elisabet Carpintero, María J. Muñoz-Gomez, Ángel Blázquez-Carrasco, and María P. González-Dugo
Proc. IAHS, 385, 339–344, https://doi.org/10.5194/piahs-385-339-2024,https://doi.org/10.5194/piahs-385-339-2024, 2024
Short summary
Long-term water stress and drought assessment of Mediterranean oak savanna vegetation using thermal remote sensing
María P. González-Dugo, Xuelong Chen, Ana Andreu, Elisabet Carpintero, Pedro J. Gómez-Giraldez, Arnaud Carrara, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 755–768, https://doi.org/10.5194/hess-25-755-2021,https://doi.org/10.5194/hess-25-755-2021, 2021
Short summary
Source partitioning of H2O and CO2 fluxes based on high-frequency eddy covariance data: a comparison between study sites
Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, María P. González-Dugo, Günther Heinemann, Cor M. J. Jacobs, Matthias Mauder, Arnold F. Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodríguez, Todd M. Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph K. Thomas, Veronika Valler, Matthias J. Zeeman, and Harry Vereecken
Biogeosciences, 16, 1111–1132, https://doi.org/10.5194/bg-16-1111-2019,https://doi.org/10.5194/bg-16-1111-2019, 2019
Short summary
Effect of the water stress on gross primary production modeling of a Mediterranean oak savanna ecosystem
Pedro J. Gómez-Giráldez, Elisabet Carpintero, Mario Ramos, Cristina Aguilar, and María P. González-Dugo
Proc. IAHS, 380, 37–43, https://doi.org/10.5194/piahs-380-37-2018,https://doi.org/10.5194/piahs-380-37-2018, 2018
Short summary
Preface: Earth Observation for Integrated Water and Basin Management: Challenges for adaptation to a changing environment
María J. Polo, Maria P. González-Dugo, and Christopher Neale
Proc. IAHS, 380, 1–2, https://doi.org/10.5194/piahs-380-1-2018,https://doi.org/10.5194/piahs-380-1-2018, 2018

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration: Guidelines for Computing Crop Requirements, Irrigation and Drainage Paper No. 56, FAO, Roma (Italia), 1998. 
Bergström, S.: Development and Application of a Conceptual Runoff Model For Scandinavian Catchments, SMHI, Report No. RHO 7, Norrköping, 1976. 
Berk, A., Bernstein, L. S., and Robertson, D. C.: MODTRAN: a moderate resolution model for LOWTRAN7, GL-TR -89-0122, Air Force Geophys. Lab., Hanscom AFB, MA, 38 pp., 1989. 
Campos, I., Villondre, J., Carrara, A., and Calera, A.: Remote sensing-based soil water balance to estimate Mediterranean holm oak savanna (dehesa) evapotranspiration under water stress conditions, J. Hydrol., 494, 1–9, 2013. 
Campos, I., Balbontín, C., González-Piqueras, J., González-Dugo, M. P., Neale, C. M. U., and Calera, A.: Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards, Agr. Water Manage., 165, 141–152, 2016. 
Download
Short summary
This work monitors the water consumed by the vegetation in two watersheds of Southern Spain for two years. An approach based on the reference evapotranspiration (ETo) and vegetation indices (VIs)-derived canopy coefficients is used (VI-ETo approach). A spatial analysis of ET of the main vegetation types was performed. The annual runoff, estimated with a simple water balance and using the ET, was similar to that obtained by the HBV model, which reproduces the river discharge at the outlet.