Articles | Volume 380
https://doi.org/10.5194/piahs-380-17-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-380-17-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evapotranspiration and evaporation/transpiration partitioning with dual source energy balance models in agricultural lands
CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse,
France
Emilie Delogu
CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse,
France
Sameh Saadi
CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse,
France
Université de Carthage/Institut National Agronomique de Tunisie,
Tunis, Tunisie
Wafa Chebbi
CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse,
France
Université de Carthage/Institut National Agronomique de Tunisie,
Tunis, Tunisie
Albert Olioso
EMMAH, INRA, Université d'Avignon et des Pays de Vaucluse,
Avignon, France
Bernard Mougenot
CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse,
France
Pascal Fanise
CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse,
France
Zohra Lili-Chabaane
Université de Carthage/Institut National Agronomique de Tunisie,
Tunis, Tunisie
Jean-Pierre Lagouarde
ISPA, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
Related authors
Ghizlane Aouade, Lionel Jarlan, Jamal Ezzahar, Salah Er-Raki, Adrien Napoly, Abdelfattah Benkaddour, Said Khabba, Gilles Boulet, Sébastien Garrigues, Abdelghani Chehbouni, and Aaron Boone
Hydrol. Earth Syst. Sci., 24, 3789–3814, https://doi.org/10.5194/hess-24-3789-2020, https://doi.org/10.5194/hess-24-3789-2020, 2020
Short summary
Short summary
Our objective is to question the representation of the energy budget in surface–vegetation–atmosphere transfer models for the prediction of the convective fluxes in crops with complex structures (row) and under transient hydric regimes due to irrigation. The main result is that a coupled multiple energy balance approach is necessary to properly predict surface exchanges for these complex crops. It also points out the need for other similar studies on various crops with different sparsity levels.
Wafa Chebbi, Vincent Rivalland, Pascal Fanise, Aaron Boone, Lionel Jarlan, Hechmi Chehab, Zohra Lili Chabaane, Valérie Le Dantec, and Gilles Boulet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-104, https://doi.org/10.5194/hess-2020-104, 2020
Publication in HESS not foreseen
Guillaume Bigeard, Benoit Coudert, Jonas Chirouze, Salah Er-Raki, Gilles Boulet, Eric Ceschia, and Lionel Jarlan
Hydrol. Earth Syst. Sci., 23, 5033–5058, https://doi.org/10.5194/hess-23-5033-2019, https://doi.org/10.5194/hess-23-5033-2019, 2019
Short summary
Short summary
The purpose of our work is to estimate landscape evapotranspiration (ET) fluxes over agricultural areas by relying on two surface modeling approaches with increasing complexity and input data needs.
Both approaches, compared sequentially and over the entire crop cycle, showed quite similar performance except under developed vegetation and stressed conditions. This study helps lay the groundwork for exploring the complementarities between instantaneous and continuous ET mapping with TIR data.
G. Boulet, E. Delogu, W. Chebbi, Z. Rafi, V. Le Dantec, K. Mallick, B. Mougenot, A. Olioso, M. Zribi, Z. Lili-Chabaane, S. Er-Raki, and O. Merlin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 9–12, https://doi.org/10.5194/isprs-archives-XLII-3-W6-9-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-9-2019, 2019
J.-P. Lagouarde, B. K. Bhattacharya, P. Crébassol, P. Gamet, D. Adlakha, C. S. Murthy, S. K. Singh, M. Mishra, R. Nigam, P. V. Raju, S. S. Babu, M. V. Shukla, M. R. Pandya, G. Boulet, X. Briottet, I. Dadou, G. Dedieu, M. Gouhier, O. Hagolle, M. Irvine, F. Jacob, K. K Kumar, B. Laignel, P. Maisongrande, K. Mallick, A. Olioso, C. Ottlé, J.-L. Roujean, J. Sobrino, R. Ramakrishnan, M. Sekhar, and S. S. Sarkar
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 403–407, https://doi.org/10.5194/isprs-archives-XLII-3-W6-403-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-403-2019, 2019
Jordi Etchanchu, Vincent Rivalland, Stéphanie Faroux, Aurore Brut, and Gilles Boulet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-126, https://doi.org/10.5194/hess-2019-126, 2019
Revised manuscript not accepted
Short summary
Short summary
This study presents an innovative method to assess irrigation volumes in the ISBA land surface model with high resolution optical remote sensing. We developed a new automated irrigation scheme which can adapt to a wide variety of crops and irrigation practices. Remotely sensed vegetation dynamics was used to drive its parameters. The simulation performed on several maize plots in south-western France shows an improvement on the simulated irrigation volumes and timing.
Sameh Saadi, Gilles Boulet, Malik Bahir, Aurore Brut, Émilie Delogu, Pascal Fanise, Bernard Mougenot, Vincent Simonneaux, and Zohra Lili Chabaane
Hydrol. Earth Syst. Sci., 22, 2187–2209, https://doi.org/10.5194/hess-22-2187-2018, https://doi.org/10.5194/hess-22-2187-2018, 2018
Short summary
Short summary
This study evaluated the performances of an energy balance model (SPARSE model) forced by MODIS remote sensing products in an operational context to estimate instantaneous and daily evapotranspiration. The validation protocol was based on an unprecedented dataset with an extra-large aperture scintillometer. Indeed, to our knowledge, this is the first work based on XLAS measurements acquired over the course of more than 2 years.
G. Boulet, B. Mougenot, J.-P. Lhomme, P. Fanise, Z. Lili-Chabaane, A. Olioso, M. Bahir, V. Rivalland, L. Jarlan, O. Merlin, B. Coudert, S. Er-Raki, and J.-P. Lagouarde
Hydrol. Earth Syst. Sci., 19, 4653–4672, https://doi.org/10.5194/hess-19-4653-2015, https://doi.org/10.5194/hess-19-4653-2015, 2015
Short summary
Short summary
The paper presents a new model (SPARSE) to estimate total evapotranspiration as well as its components (evaporation and transpiration) from remote-sensing data in the thermal infra-red domain. The limits of computing two unknowns (evaporation and transpiration) out of one piece of information (one surface temperature) are assessed theoretically. The model performance in retrieving the components as well as the water stress is assessed for two wheat crops (one irrigated and one rainfed).
J. Chirouze, G. Boulet, L. Jarlan, R. Fieuzal, J. C. Rodriguez, J. Ezzahar, S. Er-Raki, G. Bigeard, O. Merlin, J. Garatuza-Payan, C. Watts, and G. Chehbouni
Hydrol. Earth Syst. Sci., 18, 1165–1188, https://doi.org/10.5194/hess-18-1165-2014, https://doi.org/10.5194/hess-18-1165-2014, 2014
R. Amri, M. Zribi, Z. Lili-Chabaane, C. Szczypta, J. C. Calvet, and G. Boulet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-8117-2013, https://doi.org/10.5194/hessd-10-8117-2013, 2013
Revised manuscript not accepted
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Ghizlane Aouade, Lionel Jarlan, Jamal Ezzahar, Salah Er-Raki, Adrien Napoly, Abdelfattah Benkaddour, Said Khabba, Gilles Boulet, Sébastien Garrigues, Abdelghani Chehbouni, and Aaron Boone
Hydrol. Earth Syst. Sci., 24, 3789–3814, https://doi.org/10.5194/hess-24-3789-2020, https://doi.org/10.5194/hess-24-3789-2020, 2020
Short summary
Short summary
Our objective is to question the representation of the energy budget in surface–vegetation–atmosphere transfer models for the prediction of the convective fluxes in crops with complex structures (row) and under transient hydric regimes due to irrigation. The main result is that a coupled multiple energy balance approach is necessary to properly predict surface exchanges for these complex crops. It also points out the need for other similar studies on various crops with different sparsity levels.
Wafa Chebbi, Vincent Rivalland, Pascal Fanise, Aaron Boone, Lionel Jarlan, Hechmi Chehab, Zohra Lili Chabaane, Valérie Le Dantec, and Gilles Boulet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-104, https://doi.org/10.5194/hess-2020-104, 2020
Publication in HESS not foreseen
Guillaume Bigeard, Benoit Coudert, Jonas Chirouze, Salah Er-Raki, Gilles Boulet, Eric Ceschia, and Lionel Jarlan
Hydrol. Earth Syst. Sci., 23, 5033–5058, https://doi.org/10.5194/hess-23-5033-2019, https://doi.org/10.5194/hess-23-5033-2019, 2019
Short summary
Short summary
The purpose of our work is to estimate landscape evapotranspiration (ET) fluxes over agricultural areas by relying on two surface modeling approaches with increasing complexity and input data needs.
Both approaches, compared sequentially and over the entire crop cycle, showed quite similar performance except under developed vegetation and stressed conditions. This study helps lay the groundwork for exploring the complementarities between instantaneous and continuous ET mapping with TIR data.
G. Boulet, E. Delogu, W. Chebbi, Z. Rafi, V. Le Dantec, K. Mallick, B. Mougenot, A. Olioso, M. Zribi, Z. Lili-Chabaane, S. Er-Raki, and O. Merlin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 9–12, https://doi.org/10.5194/isprs-archives-XLII-3-W6-9-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-9-2019, 2019
J.-P. Lagouarde, B. K. Bhattacharya, P. Crébassol, P. Gamet, D. Adlakha, C. S. Murthy, S. K. Singh, M. Mishra, R. Nigam, P. V. Raju, S. S. Babu, M. V. Shukla, M. R. Pandya, G. Boulet, X. Briottet, I. Dadou, G. Dedieu, M. Gouhier, O. Hagolle, M. Irvine, F. Jacob, K. K Kumar, B. Laignel, P. Maisongrande, K. Mallick, A. Olioso, C. Ottlé, J.-L. Roujean, J. Sobrino, R. Ramakrishnan, M. Sekhar, and S. S. Sarkar
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 403–407, https://doi.org/10.5194/isprs-archives-XLII-3-W6-403-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-403-2019, 2019
Jordi Etchanchu, Vincent Rivalland, Stéphanie Faroux, Aurore Brut, and Gilles Boulet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-126, https://doi.org/10.5194/hess-2019-126, 2019
Revised manuscript not accepted
Short summary
Short summary
This study presents an innovative method to assess irrigation volumes in the ISBA land surface model with high resolution optical remote sensing. We developed a new automated irrigation scheme which can adapt to a wide variety of crops and irrigation practices. Remotely sensed vegetation dynamics was used to drive its parameters. The simulation performed on several maize plots in south-western France shows an improvement on the simulated irrigation volumes and timing.
Sameh Saadi, Gilles Boulet, Malik Bahir, Aurore Brut, Émilie Delogu, Pascal Fanise, Bernard Mougenot, Vincent Simonneaux, and Zohra Lili Chabaane
Hydrol. Earth Syst. Sci., 22, 2187–2209, https://doi.org/10.5194/hess-22-2187-2018, https://doi.org/10.5194/hess-22-2187-2018, 2018
Short summary
Short summary
This study evaluated the performances of an energy balance model (SPARSE model) forced by MODIS remote sensing products in an operational context to estimate instantaneous and daily evapotranspiration. The validation protocol was based on an unprecedented dataset with an extra-large aperture scintillometer. Indeed, to our knowledge, this is the first work based on XLAS measurements acquired over the course of more than 2 years.
Abbas Fayad, Simon Gascoin, Ghaleb Faour, Pascal Fanise, Laurent Drapeau, Janine Somma, Ali Fadel, Ahmad Al Bitar, and Richard Escadafal
Earth Syst. Sci. Data, 9, 573–587, https://doi.org/10.5194/essd-9-573-2017, https://doi.org/10.5194/essd-9-573-2017, 2017
Short summary
Short summary
Snowmelt plays a key role in the replenishment of the karst groundwater in Lebanon. The proper estimation of the water contained in the snowpack is one of Lebanon's most challenging questions. In this paper, we present continuous meteorological and snow course observations for the first time in the snow-dominated regions of Mount Lebanon. This new dataset can be used to feed an advanced snowpack model and is the first step towards a better evaluation of the snowmelt in Lebanon.
G. Boulet, B. Mougenot, J.-P. Lhomme, P. Fanise, Z. Lili-Chabaane, A. Olioso, M. Bahir, V. Rivalland, L. Jarlan, O. Merlin, B. Coudert, S. Er-Raki, and J.-P. Lagouarde
Hydrol. Earth Syst. Sci., 19, 4653–4672, https://doi.org/10.5194/hess-19-4653-2015, https://doi.org/10.5194/hess-19-4653-2015, 2015
Short summary
Short summary
The paper presents a new model (SPARSE) to estimate total evapotranspiration as well as its components (evaporation and transpiration) from remote-sensing data in the thermal infra-red domain. The limits of computing two unknowns (evaporation and transpiration) out of one piece of information (one surface temperature) are assessed theoretically. The model performance in retrieving the components as well as the water stress is assessed for two wheat crops (one irrigated and one rainfed).
J. Chirouze, G. Boulet, L. Jarlan, R. Fieuzal, J. C. Rodriguez, J. Ezzahar, S. Er-Raki, G. Bigeard, O. Merlin, J. Garatuza-Payan, C. Watts, and G. Chehbouni
Hydrol. Earth Syst. Sci., 18, 1165–1188, https://doi.org/10.5194/hess-18-1165-2014, https://doi.org/10.5194/hess-18-1165-2014, 2014
R. Amri, M. Zribi, Z. Lili-Chabaane, C. Szczypta, J. C. Calvet, and G. Boulet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-8117-2013, https://doi.org/10.5194/hessd-10-8117-2013, 2013
Revised manuscript not accepted
Cited articles
Boulet, G., Mougenot, B., Lhomme, J.-P., Fanise, P., Lili-Chabaane, Z.,
Olioso, A., Bahir, M., Rivalland, V., Jarlan, L., Merlin, O., Coudert, B.,
Er-Raki, S., and Lagouarde, J.-P.: The SPARSE model for the prediction of
water stress and evapotranspiration components from thermal infra-red data
and its evaluation over irrigated and rainfed wheat, Hydrol. Earth Syst.
Sci., 19, 4653–4672, https://doi.org/10.5194/hess-19-4653-2015, 2015.
Kustas, W. P. and Norman, J. M.: Evaluation of soil and vegetation heat flux
predictions using a simple two-source model with radiometric temperatures for
partial canopy cover, Agr. Forest Meteorol., 94, 13–29,
https://doi.org/10.1016/s0168-1923(99)00005-2, 1999.
Merlin, O., Al Bitar, A., Rivalland, V., Beziat, P., Ceschia, E., and Dedieu,
G.: An Analytical Model of Evaporation Efficiency for Unsaturated Soil
Surfaces with an Arbitrary Thickness, J. Appl. Meteorol. Climatol., 50,
457–471, https://doi.org/10.1175/2010jamc2418.1, 2011.
Saadi, S., Boulet, G., Bahir, M., Brut, A., Delogu, É., Fanise, P.,
Mougenot, B., Simonneaux, V., and Lili Chabaane, Z.: Assessment of actual
evapotranspiration over a semiarid heterogeneous land surface by means of
coupled low-resolution remote sensing data with an energy balance model:
comparison to extra-large aperture scintillometer measurements, Hydrol. Earth
Syst. Sci., 22, 2187–2209, https://doi.org/10.5194/hess-22-2187-2018, 2018.
Schmugge, T. J.: Effect of texture on microwave emission from soils, IEEE T.
Geosci. Remote, 18, 353–361, 1980.
Short summary
Mapping of transpiration T and evaporation E is crucial for assessing plant water use and plant water status at landscape scale. Dual-source energy balance models forced by thermal infrared observations provide separate estimates of E and T but rely on specific assumptions to get both terms from the sole surface temperature. We show here with a synthetic experiment that additional information is thus required, e.g. surface water content that can be derived from radar.
Mapping of transpiration T and evaporation E is crucial for assessing plant water use and plant...