Articles | Volume 373
https://doi.org/10.5194/piahs-373-95-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-373-95-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climate, orography and scale controls on flood frequency in Triveneto (Italy)
Simone Persiano
CORRESPONDING AUTHOR
Department DICAM, School of Civil Engineering, University of Bologna, Bologna, Italy
Attilio Castellarin
Department DICAM, School of Civil Engineering, University of Bologna, Bologna, Italy
Jose Luis Salinas
Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria
Alessio Domeneghetti
Department DICAM, School of Civil Engineering, University of Bologna, Bologna, Italy
Armando Brath
Department DICAM, School of Civil Engineering, University of Bologna, Bologna, Italy
Related authors
Simone Persiano, Alessio Pugliese, Alberto Aloe, Jon Olav Skøien, Attilio Castellarin, and Alberto Pistocchi
Earth Syst. Sci. Data, 14, 4435–4443, https://doi.org/10.5194/essd-14-4435-2022, https://doi.org/10.5194/essd-14-4435-2022, 2022
Short summary
Short summary
For about 24000 river basins across Europe, this study provides a continuous representation of the streamflow regime in terms of empirical flow–duration curves (FDCs), which are key signatures of the hydrological behaviour of a catchment and are widely used for supporting decisions on water resource management as well as for assessing hydrologic change. FDCs at ungauged sites are estimated by means of a geostatistical procedure starting from data observed at about 3000 sites across Europe.
Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 22, 1469–1486, https://doi.org/10.5194/nhess-22-1469-2022, https://doi.org/10.5194/nhess-22-1469-2022, 2022
Short summary
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Alessio Pugliese, Simone Persiano, Stefano Bagli, Paolo Mazzoli, Juraj Parajka, Berit Arheimer, René Capell, Alberto Montanari, Günter Blöschl, and Attilio Castellarin
Hydrol. Earth Syst. Sci., 22, 4633–4648, https://doi.org/10.5194/hess-22-4633-2018, https://doi.org/10.5194/hess-22-4633-2018, 2018
Short summary
Short summary
This research work focuses on the development of an innovative method for enhancing the predictive capability of macro-scale rainfall–runoff models by means of a geostatistical apporach. In our method, one can get enhanced streamflow simulations without any further model calibration. Indeed, this method is neither computational nor data-intensive and is implemented only using observed streamflow data and a GIS vector layer with catchment boundaries. Assessments are performed in the Tyrol region.
Marta Ballocci, Daniela Molinari, Giovanni Marin, Marta Galliani, Alessio Domeneghetti, Giovanni Menduni, Simone Sterlacchini, and Francesco Ballio
EGUsphere, https://doi.org/10.5194/egusphere-2024-3017, https://doi.org/10.5194/egusphere-2024-3017, 2024
Short summary
Short summary
This study estimates flood direct damage to businesses in Italy using 812 damage records from five riverine flood case studies. A multiple regression model predicts economic damage based on business size, water depth, and economic sectors. The results show that damage increases non-proportionally with firm size, while water depth mainly affects stock damage. Healthcare, commercial, and manufacturing sectors are most vulnerable to building, stock, and equipment damage, respectively.
Andrea Magnini, Valentina Pavan, and Attilio Castellarin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3261, https://doi.org/10.5194/egusphere-2024-3261, 2024
Short summary
Short summary
This study describes a new methodology to identify regional structures in the dependence of extreme rainfall on global climate indexes. The study area is north-central Italy, but the methods are highly adaptable to other regions. We observe that the Western Mediterranean Oscillation Index has a strong influence, whose geographical pattern is in line with other studies. We show also that the use of the Index may improve the estimation of the extreme rainfall depth with a given probability.
Günter Blöschl, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Julia Eisl, Michael Hofer, Markus Hollaus, Zsolt Horváth, Jürgen Komma, Artem Konev, Juraj Parajka, Norbert Pfeifer, Andreas Reithofer, José Salinas, Peter Valent, Roman Výleta, Jürgen Waser, Michael H. Wimmer, and Heinz Stiefelmeyer
Nat. Hazards Earth Syst. Sci., 24, 2071–2091, https://doi.org/10.5194/nhess-24-2071-2024, https://doi.org/10.5194/nhess-24-2071-2024, 2024
Short summary
Short summary
A methodology of regional flood hazard mapping is proposed, based on data in Austria, which combines automatic methods with manual interventions to maximise efficiency and to obtain estimation accuracy similar to that of local studies. Flood discharge records from 781 stations are used to estimate flood hazard patterns of a given return period at a resolution of 2 m over a total stream length of 38 000 km. The hazard maps are used for civil protection, risk awareness and insurance purposes.
Natasha Petruccelli, Luca Mantecchini, Alice Gallazzi, Daniela Molinari, Mohammed Hammouti, Marco Zazzeri, Simone Sterlacchini, Francesco Ballio, Armando Brath, and Alessio Domeneghetti
Proc. IAHS, 385, 407–413, https://doi.org/10.5194/piahs-385-407-2024, https://doi.org/10.5194/piahs-385-407-2024, 2024
Short summary
Short summary
The study illustrates the methodology developed for flood risk assessment for road and railway infrastructures. Through the creation of a detailed database, using different data sources, and the definition of a risk matrix, a risk level (High, Medium, Low and Null) is assigned to each section, considering the physical and functional characteristics of the infrastructure, as well as its relevance and the magnitude of the expected event.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Simone Persiano, Alessio Pugliese, Alberto Aloe, Jon Olav Skøien, Attilio Castellarin, and Alberto Pistocchi
Earth Syst. Sci. Data, 14, 4435–4443, https://doi.org/10.5194/essd-14-4435-2022, https://doi.org/10.5194/essd-14-4435-2022, 2022
Short summary
Short summary
For about 24000 river basins across Europe, this study provides a continuous representation of the streamflow regime in terms of empirical flow–duration curves (FDCs), which are key signatures of the hydrological behaviour of a catchment and are widely used for supporting decisions on water resource management as well as for assessing hydrologic change. FDCs at ungauged sites are estimated by means of a geostatistical procedure starting from data observed at about 3000 sites across Europe.
Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 22, 1469–1486, https://doi.org/10.5194/nhess-22-1469-2022, https://doi.org/10.5194/nhess-22-1469-2022, 2022
Short summary
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Mattia Amadio, Anna Rita Scorzini, Francesca Carisi, Arthur H. Essenfelder, Alessio Domeneghetti, Jaroslav Mysiak, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, https://doi.org/10.5194/nhess-19-661-2019, 2019
Short summary
Short summary
Flood risk management relies on assessments performed using flood loss models of different complexities. We compared the performances of expert-based and empirical damage models on three major flood events in northern Italy. Our findings suggest that multivariate models have better potential to provide reliable damage estimates if extensive ancillary characterisation data are available. Expert-based approaches are better suited for transferability compared to empirically based approaches.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Alessio Pugliese, Simone Persiano, Stefano Bagli, Paolo Mazzoli, Juraj Parajka, Berit Arheimer, René Capell, Alberto Montanari, Günter Blöschl, and Attilio Castellarin
Hydrol. Earth Syst. Sci., 22, 4633–4648, https://doi.org/10.5194/hess-22-4633-2018, https://doi.org/10.5194/hess-22-4633-2018, 2018
Short summary
Short summary
This research work focuses on the development of an innovative method for enhancing the predictive capability of macro-scale rainfall–runoff models by means of a geostatistical apporach. In our method, one can get enhanced streamflow simulations without any further model calibration. Indeed, this method is neither computational nor data-intensive and is implemented only using observed streamflow data and a GIS vector layer with catchment boundaries. Assessments are performed in the Tyrol region.
Francesca Carisi, Kai Schröter, Alessio Domeneghetti, Heidi Kreibich, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 18, 2057–2079, https://doi.org/10.5194/nhess-18-2057-2018, https://doi.org/10.5194/nhess-18-2057-2018, 2018
Short summary
Short summary
By analyzing a comprehensive loss dataset of affected private households after a recent river flood event in northern Italy, we tackle the problem of flood damage estimation in Emilia-Romagna (Italy). We develop empirical uni- and multivariable loss models for the residential sector. Outcomes highlight that the latter seem to outperform the former and, in addition, results show a higher accuracy of univariable models based on local data compared to literature ones derived for different contexts.
Francesca Carisi, Alessio Domeneghetti, and Attilio Castellarin
Proc. IAHS, 373, 161–166, https://doi.org/10.5194/piahs-373-161-2016, https://doi.org/10.5194/piahs-373-161-2016, 2016
Short summary
Short summary
Can differential land-subsidence significantly alter river flooding dynamics, and thus flood risk in flood prone areas? In the area around Ravenna, in Italy, that experimented a cumulative drop of more than 1.5 m after World War II due to groundwater pumping and gas production platforms, we compared the actual effects on flood-hazard dynamics of differential land-subsidence relative to those associated with other man-made topographic alterations, which proved to be much more significant.
F. Carisi, A. Domeneghetti, and A. Castellarin
Proc. IAHS, 370, 209–215, https://doi.org/10.5194/piahs-370-209-2015, https://doi.org/10.5194/piahs-370-209-2015, 2015
Short summary
Short summary
Our study proposes simplified graphical tools (Hypsometric Vulnerability Curves) for assessing the recent dynamics of the flood vulnerability and risk over a large floodable area along the River Po, Northern Italy, and for defining sustainable flood-risk mitigation strategies. We assess the accuracy of the proposed methodology, based on inundation scenarios simulated with a quasi-2D model, by means of a comparison with a traditional approach relying on the simulations of a to a fully-2D model.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
S. Ceola, B. Arheimer, E. Baratti, G. Blöschl, R. Capell, A. Castellarin, J. Freer, D. Han, M. Hrachowitz, Y. Hundecha, C. Hutton, G. Lindström, A. Montanari, R. Nijzink, J. Parajka, E. Toth, A. Viglione, and T. Wagener
Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015, https://doi.org/10.5194/hess-19-2101-2015, 2015
Short summary
Short summary
We present the outcomes of a collaborative hydrological experiment undertaken by five different international research groups in a virtual laboratory. Moving from the definition of accurate protocols, a rainfall-runoff model was independently applied by the research groups, which then engaged in a comparative discussion. The results revealed that sharing protocols and running the experiment within a controlled environment is fundamental for ensuring experiment repeatability and reproducibility.
J. L. Salinas, A. Castellarin, A. Viglione, S. Kohnová, and T. R. Kjeldsen
Hydrol. Earth Syst. Sci., 18, 4381–4389, https://doi.org/10.5194/hess-18-4381-2014, https://doi.org/10.5194/hess-18-4381-2014, 2014
A. Pugliese, A. Castellarin, and A. Brath
Hydrol. Earth Syst. Sci., 18, 3801–3816, https://doi.org/10.5194/hess-18-3801-2014, https://doi.org/10.5194/hess-18-3801-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
M. Exner-Kittridge, J. L. Salinas, and M. Zessner
Hydrol. Earth Syst. Sci., 18, 2715–2734, https://doi.org/10.5194/hess-18-2715-2014, https://doi.org/10.5194/hess-18-2715-2014, 2014
G. Di Baldassarre, A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, https://doi.org/10.5194/hess-17-3295-2013, 2013
A. Domeneghetti, S. Vorogushyn, A. Castellarin, B. Merz, and A. Brath
Hydrol. Earth Syst. Sci., 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, https://doi.org/10.5194/hess-17-3127-2013, 2013
J. L. Salinas, G. Laaha, M. Rogger, J. Parajka, A. Viglione, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 2637–2652, https://doi.org/10.5194/hess-17-2637-2013, https://doi.org/10.5194/hess-17-2637-2013, 2013
A. Viglione, J. Parajka, M. Rogger, J. L. Salinas, G. Laaha, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 2263–2279, https://doi.org/10.5194/hess-17-2263-2013, https://doi.org/10.5194/hess-17-2263-2013, 2013
J. Parajka, A. Viglione, M. Rogger, J. L. Salinas, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 1783–1795, https://doi.org/10.5194/hess-17-1783-2013, https://doi.org/10.5194/hess-17-1783-2013, 2013
S. A. Archfield, A. Pugliese, A. Castellarin, J. O. Skøien, and J. E. Kiang
Hydrol. Earth Syst. Sci., 17, 1575–1588, https://doi.org/10.5194/hess-17-1575-2013, https://doi.org/10.5194/hess-17-1575-2013, 2013
E. Baratti, A. Montanari, A. Castellarin, J. L. Salinas, A. Viglione, and A. Bezzi
Hydrol. Earth Syst. Sci., 16, 4651–4660, https://doi.org/10.5194/hess-16-4651-2012, https://doi.org/10.5194/hess-16-4651-2012, 2012
Cited articles
Allamano, P., Claps, P., and Laio, F.: An analytical model of the effects of catchment elevation on the flood frequency distribution, Water Resour. Res., 45, W01402, https://doi.org/10.1029/2007WR006658, 2009a.
Allamano, P., Claps, P., and Laio, F.: Global warming increases flood risk in mountainous areas, Geophys. Res. Lett., 36, L24404, https://doi.org/10.1029/2009GL041395, 2009b.
Beniston, M.: Impacts of climatic change on water and associated economic activities in the Swiss Alps, J. Hydrology, 412–413, 291–296, https://doi.org/10.1016/j.jhydrol.2010.06.046, 2012.
Burn, D. H.: Evaluation of regional flood frequency analysis with a region of influence approach, Water Resour. Res., 26, 2257, https://doi.org/10.1029/WR026i010p02257, 1990.
Castellarin, A. and Pistocchi, A.: An analysis of change in alpine annual maximum discharges: implications for the selection of design discharges, Hydrol. Process., 26, 1517–1526, https://doi.org/10.1002/hyp.8249, 2012.
Hosking, J. R. M. and Wallis, J. R.: Some statistics useful in regional frequency analysis, Water Resour. Res., 29, 271–281, https://doi.org/10.1029/92WR01980, 1993.
Jakob, D., Reed, D. W., and Robson, A. J.: Choosing a pooling-group, in: Flood Estimation Handbook, Institute of Hydrology, Wallingford, UK, Volume 3, 1999.
Salinas, J. L., Castellarin, A., Kohnová, S., and Kjeldsen, T. R.: Regional parent flood frequency distributions in Europe – Part 2: Climate and scale controls, Hydrol. Earth Syst. Sci., 18, 4391–4401, https://doi.org/10.5194/hess-18-4391-2014, 2014.
Schmocker-Fackel, P. and Naef, F.: Changes in flood frequencies in Switzerland since 1500, Hydrol. Earth Syst. Sci., 14, 1581–1594, https://doi.org/10.5194/hess-14-1581-2010, 2010.
Viglione, A.: Confidence intervals for the coefficient of L-variation in hydrological applications, Hydrol. Earth Syst. Sci., 14, 2229–2242, https://doi.org/10.5194/hess-14-2229-2010, 2010.
Villi, V. and Bacchi, B.: Valutazione delle piene nel Triveneto, CNR-GNDCI, Padova-Brescia, Italia, 2001.
Zrinji, Z. and Burn, D. H.: Regional Flood Frequency with Hierarchical Region of Influence, J. Water Res. Pl.-ASCE, 122, 245–252, 1996.
Short summary
The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review reference procedures for design flood estimation. Our study focuses on Triveneto (Italy) and proposes an update of the existing reference procedure by properly considering climate and scale controls on flood frequency. Moreover, the study highlights the remarkable influence of a single extreme-floods year on analyses for detecting possible changes in flood frequency regime.
The growing concern about the possible effects of climate change on flood frequency regime is...