Articles | Volume 373
https://doi.org/10.5194/piahs-373-143-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-373-143-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Vehicles instability criteria for flood risk assessment of a street network
Chiara Arrighi
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of
Florence, Florence, Italy
Nicolas Huybrechts
Laboratoire Roberval, Sorbonne Universités, Université de
Technologie de Compiègne, CNRS, Centre de Recherches de Royallieu,
Compiègne Cedex, France
CEREMA-DTecEMF, Margny Lès Compiègne, France
Abdellatif Ouahsine
Laboratoire Roberval, Sorbonne Universités, Université de
Technologie de Compiègne, CNRS, Centre de Recherches de Royallieu,
Compiègne Cedex, France
Patrick Chassé
CEREMA-DTecEMF, Margny Lès Compiègne, France
Hocine Oumeraci
TU Brauschweig, Leicthweiss Institute for Hydraulic Engineering and
Water Resources, Braunschweig, Germany
Fabio Castelli
Department of Civil and Environmental Engineering, University of
Florence, Florence, Italy
Related authors
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024, https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
Short summary
This work describes the flood damage to cultural heritage (CH) that occurred in September 2022 in central Italy. Datasets related to flood impacts on cultural heritage are rare, and this work aims at highlighting both tangible and intangible aspects and their correlation with physical characteristics of flood (i.e. water depth and flow velocity). The results show that current knowledge and datasets are inadequate for risk assessment of CH.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-105, https://doi.org/10.5194/nhess-2024-105, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Environmental assets are crucial to sustain and fulfil life on Earth through ecosystem services. Assessing their flood risk is thus seminal, besides required by several norms. Even though, this field is not yet sufficiently developed. We explored the exposure component of the flood risk, and developed an evaluating methodology based on the ecosystem services provided by the environmental assets, to discern assets and areas more important than others with metrics suitable to large scale studies.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Chiara Arrighi, Maria Pregnolato, and Fabio Castelli
Nat. Hazards Earth Syst. Sci., 21, 1955–1969, https://doi.org/10.5194/nhess-21-1955-2021, https://doi.org/10.5194/nhess-21-1955-2021, 2021
Short summary
Short summary
Floods may affect critical infrastructure which provides essential services to people. We analyse the impact of floods on road networks and water supply systems, and we investigate how cascade effects propagate if interdependencies among networks are not considered. The analysis shows that if preparedness plans include information on accessibility to key sections of water supply plants, less people suffer from water shortage in case of flood. The method is tested in the city of Florence (Italy).
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Chiara Arrighi, Fabio Tarani, Enrico Vicario, and Fabio Castelli
Nat. Hazards Earth Syst. Sci., 17, 2109–2123, https://doi.org/10.5194/nhess-17-2109-2017, https://doi.org/10.5194/nhess-17-2109-2017, 2017
Short summary
Short summary
Floods cause damage to people, buildings and infrastructures. Due to their usual location near rivers, water utilities are particularly exposed; in case of flood, the inundation of the facility can damage equipment and cause power outages. Such impact lead to costly repairs and disruption of service affecting indirectly people outside the inundated area. In this work a method to estimate the impact of floods on a water distribution system is introduced and applied to a case study.
Chiara Arrighi, Hocine Oumeraci, and Fabio Castelli
Hydrol. Earth Syst. Sci., 21, 515–531, https://doi.org/10.5194/hess-21-515-2017, https://doi.org/10.5194/hess-21-515-2017, 2017
Short summary
Short summary
In developed countries, the majority of fatalities during floods occurs as a consequence of inappropriate high-risk behaviour such as walking or driving in floodwaters. This work addresses pedestrians' instability in floodwaters. It analyses both the contribution of flood and human physical characteristics in the loss of stability highlighting the key role of subject height (submergence) and flow regime. The method consists of a re-analysis of experiments and numerical modelling.
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024, https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
Short summary
This work describes the flood damage to cultural heritage (CH) that occurred in September 2022 in central Italy. Datasets related to flood impacts on cultural heritage are rare, and this work aims at highlighting both tangible and intangible aspects and their correlation with physical characteristics of flood (i.e. water depth and flow velocity). The results show that current knowledge and datasets are inadequate for risk assessment of CH.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-105, https://doi.org/10.5194/nhess-2024-105, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Environmental assets are crucial to sustain and fulfil life on Earth through ecosystem services. Assessing their flood risk is thus seminal, besides required by several norms. Even though, this field is not yet sufficiently developed. We explored the exposure component of the flood risk, and developed an evaluating methodology based on the ecosystem services provided by the environmental assets, to discern assets and areas more important than others with metrics suitable to large scale studies.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Francisco Peña, Fernando Nardi, Assefa Melesse, Jayantha Obeysekera, Fabio Castelli, René M. Price, Todd Crowl, and Noemi Gonzalez-Ramirez
Nat. Hazards Earth Syst. Sci., 22, 775–793, https://doi.org/10.5194/nhess-22-775-2022, https://doi.org/10.5194/nhess-22-775-2022, 2022
Short summary
Short summary
Groundwater-induced flooding, a rare phenomenon that is increasing in low-elevation coastal cities due to higher water tables, is often neglected in flood risk mapping due to its sporadic frequency and considerably lower severity with respect to other flood hazards. A loosely coupled flood model is used to simulate the interplay between surface and subsurface flooding mechanisms simultaneously. This work opens new horizons on the development of compound flood models from a holistic perspective.
Antonio Annis, Fernando Nardi, and Fabio Castelli
Hydrol. Earth Syst. Sci., 26, 1019–1041, https://doi.org/10.5194/hess-26-1019-2022, https://doi.org/10.5194/hess-26-1019-2022, 2022
Short summary
Short summary
In this work, we proposed a multi-source data assimilation framework for near-real-time flood mapping. We used a quasi-2D hydraulic model to update model states by injecting both stage gauge observations and satellite-derived flood extents. Results showed improvements in terms of water level prediction and reduction of flood extent uncertainty when assimilating both stage gauges and satellite images with respect to the disjoint assimilation of both observations.
Chiara Arrighi, Maria Pregnolato, and Fabio Castelli
Nat. Hazards Earth Syst. Sci., 21, 1955–1969, https://doi.org/10.5194/nhess-21-1955-2021, https://doi.org/10.5194/nhess-21-1955-2021, 2021
Short summary
Short summary
Floods may affect critical infrastructure which provides essential services to people. We analyse the impact of floods on road networks and water supply systems, and we investigate how cascade effects propagate if interdependencies among networks are not considered. The analysis shows that if preparedness plans include information on accessibility to key sections of water supply plants, less people suffer from water shortage in case of flood. The method is tested in the city of Florence (Italy).
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Chiara Arrighi, Fabio Tarani, Enrico Vicario, and Fabio Castelli
Nat. Hazards Earth Syst. Sci., 17, 2109–2123, https://doi.org/10.5194/nhess-17-2109-2017, https://doi.org/10.5194/nhess-17-2109-2017, 2017
Short summary
Short summary
Floods cause damage to people, buildings and infrastructures. Due to their usual location near rivers, water utilities are particularly exposed; in case of flood, the inundation of the facility can damage equipment and cause power outages. Such impact lead to costly repairs and disruption of service affecting indirectly people outside the inundated area. In this work a method to estimate the impact of floods on a water distribution system is introduced and applied to a case study.
Chiara Arrighi, Hocine Oumeraci, and Fabio Castelli
Hydrol. Earth Syst. Sci., 21, 515–531, https://doi.org/10.5194/hess-21-515-2017, https://doi.org/10.5194/hess-21-515-2017, 2017
Short summary
Short summary
In developed countries, the majority of fatalities during floods occurs as a consequence of inappropriate high-risk behaviour such as walking or driving in floodwaters. This work addresses pedestrians' instability in floodwaters. It analyses both the contribution of flood and human physical characteristics in the loss of stability highlighting the key role of subject height (submergence) and flow regime. The method consists of a re-analysis of experiments and numerical modelling.
C. Arrighi, M. Brugioni, F. Castelli, S. Franceschini, and B. Mazzanti
Nat. Hazards Earth Syst. Sci., 13, 1375–1391, https://doi.org/10.5194/nhess-13-1375-2013, https://doi.org/10.5194/nhess-13-1375-2013, 2013
A. Strusińska-Correia, S. Husrin, and H. Oumeraci
Nat. Hazards Earth Syst. Sci., 13, 483–503, https://doi.org/10.5194/nhess-13-483-2013, https://doi.org/10.5194/nhess-13-483-2013, 2013
Cited articles
Arrighi, C., Alcèrreca-Huerta, J. C., Oumeraci, H., and Castelli, F.: Drag and lift contribution to the incipient motion of partly submerged flooded vehicles, J. Fluids Structures, 57, 170–184, 2015.
EM-DAT: Disasters in numbers (October 2000), available at: http://www.emdat.be/publications, 2012.
Fitzgerald, G., Du, W., Jamal, A., Clark, M., and Hou, X. Y.: Flood fatalities in contemporary Australia (1997–2008), Em. Med. Australasia, 22, 180–186, 2010.
Franklin, R. C. King, J. C., Aitken, P. J., and Leggat, P. A.: “Washed away”-assessing community perceptions of flooding and prevention strategies: A North Queensland example, Nat. Haz., 73, 1977–1998, 2014.
Galland, J. C., Goutal, N., and Hervouet, J. M.: TELEMAC: A new numerical model for solving shallow water equations, Adv. Water Res., 14, 138–148, 1991.
Jonkman, S. N. and Kelman, I.: An analysis of the causes and circumstances of flood disaster deaths, Disasters, 29, 75–97, 2005.
Kellar, D. M. M. and Schmidlin, T. W.: Vehicle-related flood deaths in the United States, 1995–2005, J. Flood Risk Manage., 5, 153–163, 2012.
Maples, L. and Tiefenbacher, J.: Landscape, development, technology and drivers: The geography of drownings associated with automobiles in Texas floods, 1950–2004, Appl. Geogr., 29, 224–234, 2009.
Rodriguez, H., Quarantelli, E. L., and Dynes, R. R.: Handbook of Disaster Research, Springer Science, 2006.
Sogreah: Direction Départementale de l'Equipment Corse du Sud. Evaluation du risqué pluvial sur la commune d'Ajaccio-Etude hydraulique dans les bassins versant d'Arbitronne, San Remedio at la Madonnuccia, No. 2 74 0190, 2006.
Shu, C., Xia, J., Falconer, R., and Lin, B.: Estimation of incipient velocity for partially submerged vehicles in floodwaters,J. Hydrol. Res., 49, 709–717, 2011.
Xia, J., Teo, F. Y., Lin, B., and Falconer, R.: Formula of incipient velocity for flooded vehicles, Nat. Haz., 58, 1–14, 2011.
Xia, J., Falconer, R. A., Xiao, X., and Wang, Y.: Criterion of vehicle stability in floodwaters based on theoretical and experimental studies, Nat. Haz, 70, 1619–1630, 2014.
Short summary
Many flood events have illustrated that the majority of the fatalities during an inundation occurs in a vehicle. So far, only experimental test on small scale cars have been carried out to identify the critical combinations of water depth and velocity causing the onset of motion. A dimensionless approach is here proposed to define a clearer identification of stable and unstable conditions for flooded vehicles.
Many flood events have illustrated that the majority of the fatalities during an inundation...