Articles | Volume 372
Proc. IAHS, 372, 357–360, 2015
https://doi.org/10.5194/piahs-372-357-2015
Proc. IAHS, 372, 357–360, 2015
https://doi.org/10.5194/piahs-372-357-2015
 
12 Nov 2015
12 Nov 2015

PSI-based methodology to land subsidence mechanism recognition

R. Bonì et al.

Related authors

Ground motion areas detection (GMA-D): an innovative approach to identify ground deformation areas using the SAR-based displacement time series
Roberta Bonì, Claudia Meisina, Linda Poggio, Alessandro Fontana, Giulia Tessari, Paolo Riccardi, and Mario Floris
Proc. IAHS, 382, 277–284, https://doi.org/10.5194/piahs-382-277-2020,https://doi.org/10.5194/piahs-382-277-2020, 2020
Short summary
Wavelet analysis of land subsidence time-series: Madrid Tertiary aquifer case study
Roberto Tomás, José Luis Pastor, Marta Béjar-Pizarro, Roberta Bonì, Pablo Ezquerro, José Antonio Fernández-Merodo, Carolina Guardiola-Albert, Gerardo Herrera, Claudia Meisina, Pietro Teatini, Francesco Zucca, Claudia Zoccarato, and Andrea Franceschini
Proc. IAHS, 382, 353–359, https://doi.org/10.5194/piahs-382-353-2020,https://doi.org/10.5194/piahs-382-353-2020, 2020
Understanding the dynamic behaviour for the Madrid aquifer (Spain): insights from the integration of A-DInSAR and 3-D groundwater flow and geomechanical models
Roberta Bonì, Claudia Meisina, Pietro Teatini, Francesco Zucca, Claudia Zoccarato, Andrea Franceschini, Pablo Ezquerro, Marta Béjar-Pizarro, José A. Fernández-Merodo, Carolina Guardiola-Albert, José L. Pastor, Roberto Tomás, and Gerardo Herrera
Proc. IAHS, 382, 409–414, https://doi.org/10.5194/piahs-382-409-2020,https://doi.org/10.5194/piahs-382-409-2020, 2020
Short summary
Application of multi-sensor advanced DInSAR analysis to severe land subsidence recognition: Alto Guadalentín Basin (Spain)
R. Bonì, G. Herrera, C. Meisina, D. Notti, M. Béjar-Pizarro, F. Zucca, P. J. González, M. Palano, R. Tomás, J. Fernández, J. A. Fernández-Merodo, J. Mulas, R. Aragón, C. Guardiola-Albert, and O. Mora
Proc. IAHS, 372, 45–48, https://doi.org/10.5194/piahs-372-45-2015,https://doi.org/10.5194/piahs-372-45-2015, 2015
Short summary

Cited articles

Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D.: "mixtools": an R package for analyzing finite mixture models, J. Statist. Software, 32, 1–29, 2009.
Berti, M., Corsini, A., Franceschini, S., and Iannacone, J. P.: Automated classification of Persistent Scatterers Interferometry time series, Nat. Hazards Earth Syst. Sci., 13, 1945–1958, https://doi.org/10.5194/nhess-13-1945-2013, 2013.
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A.: A new algorithm for processing interferometric data-stacks: SqueeSAR. Geoscience and Remote Sensing, IEEE Transactions on, 49, 3460–3470, 2011.
Notti, D., Calò, F., Cigna, F., Manunta, M., Herrera, G., Berti, M., Meisina, C., Tapete, D., and Zucca, F.: A User-Oriented Methodology for DInSAR Time Series Analysis and Interpretation: Landslides and Subsidence Case Studies, Pure Appl. Geophys., 1–25, https://doi.org/10.1007/s00024-015-1071-4, 2015.
Download
Short summary
A methodology based on Persistent Scatterer Interferometry (PSI) is proposed in order to disentangle the contribution of different processes that act at different spatio-temporal scales in land subsidence (i.e. vadose zone processes as swelling/shrinkage of clay soils, soil consolidation and fluid extraction). The methodology was applied in different Italian geological contexts characterized by natural and anthropic processes (i.e. a Prealpine valley and the Po Plain in northern Italy).