Articles | Volume 370
https://doi.org/10.5194/piahs-370-83-2015
https://doi.org/10.5194/piahs-370-83-2015
11 Jun 2015
 | 11 Jun 2015

Effectiveness of Water Infrastructure for River Flood Management: Part 2 – Flood Risk Assessment and Its Changes in Bangladesh

Y. Kwak, M. Gusyev, B. Arifuzzaman, I. Khairul, Y. Iwami, and K. Takeuchi

Abstract. A case study of Bangladesh presents a methodological possibility based on a global approach for assessing river flood risk and its changes considering flood hazard, exposure, basic vulnerability and coping capacity. This study consists of two parts in the issue of flood change: hazard assessment (Part 1) and risk assessment (Part 2). In Part 1, a hazard modeling technology was introduced and applied to the Ganges, Brahmaputra and Meghna (GBM) basin to quantify the change of 50- and 100-year flood hazards in Bangladesh under the present (1979–2003) and future (2075–2099) climates. Part 2 focuses on estimating nationwide flood risk in terms of affected people and rice crop damage due to a 50-year flood hazard identified in Part 1, and quantifying flood risk changes between the presence and absence of existing water infrastructure (i.e., embankments). To assess flood risk in terms of rice crop damage, rice paddy fields were extracted and flood stage-damage curves were created for maximum risk scenarios as a demonstration of risk change in the present and future climates. The preliminary results in Bangladesh show that a tendency of flood risk change strongly depends on the temporal and spatial dynamics of exposure and vulnerability such as distributed population and effectiveness of water infrastructure, which suggests that the proposed methodology is applicable anywhere in the world.

Download
Short summary
This study consists of two parts in the issue of flood change: hazard assessment (Part 1) and risk assessment (Part 2). Part 2 focuses on estimating nationwide flood risk in terms of affected people and rice crop damage due to a 50-year flood hazard and quantifying flood risk changes. The preliminary results show that a tendency of flood risk change strongly depends on the temporal and spatial dynamics of exposure and vulnerability such as distributed population and effectiveness of water infra.