Articles | Volume 387
https://doi.org/10.5194/piahs-387-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-387-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Preface: Mountain Hydrology and Cryosphere
Himalayan Cryosphere, Climate and Disaster Research Center, Department of Environmental Science and Engineering, School of Science, Kathmandu University, Dhulikhel, Nepal
Hari Krishna Shrestha
Society of Hydrologists and Meteorologists (SOHAM), Kathmandu, Nepal
Department of Civil Engineering, Nepal Engineering College, Bhaktapur, Nepal
Dhiraj Pradhananga
Department of Meteorology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
The Small Earth Nepal, Kathmandu, Nepal
Related authors
Sujan Thapa, Ragini Vaidya, Mohan Bahadur Chand, and Rijan Bhakta Kayastha
EGUsphere, https://doi.org/10.5194/egusphere-2025-4454, https://doi.org/10.5194/egusphere-2025-4454, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study examines how avalanches striking a glacial lake can cause sudden floods downstream in Nepal's Manaslu region. We used computer simulations to simulate various avalanche sizes and their effects on the lake. These simulations revealed that medium and large avalanches could lead to severe flooding in a short amount of time. This highlights the pressing need for early warning systems and better disaster preparedness to protect at-risk communities.
Kundan Lal Shrestha, Rijan Bhakta Kayastha, and Rakesh Kayastha
Proc. IAHS, 387, 25–31, https://doi.org/10.5194/piahs-387-25-2024, https://doi.org/10.5194/piahs-387-25-2024, 2024
Short summary
Short summary
The Himalayan river basins have complex terrain and lack detailed hydrological and meteorological information. This has motivated us to develop a fast and distributed model named PyGDM to simulate the hydrology of this region, which is home to both glaciers and snow. PyGDM is good at simulating glacier and snow melt. Hence, the model is suitable for studying different aspects of the Himalayan region, such as the impact of climate change and hydropower scenarios.
Rakesh Kayastha, Rijan Bhakta Kayastha, Kundan Lal Shrestha, and Smriti Gurung
Proc. IAHS, 387, 53–58, https://doi.org/10.5194/piahs-387-53-2024, https://doi.org/10.5194/piahs-387-53-2024, 2024
Short summary
Short summary
We have estimated hydropower potential in the two glacierized river basins of the Nepalese Himalayas. The Glacio-hydrological Degree-Day Model (GDM) was used with different geospatial criteria. In order to force the model simulation and to assess potential future hydrological regimes, a variety of climate variables were combined and used. The sensitivity of climate variables and their impact on hydropower potential were investigated with a combination of different climate variables.
Dinesh Joshi, Rijan Bhakta Kayastha, Kundan Lal Shrestha, and Rakesh Kayastha
Proc. IAHS, 387, 17–24, https://doi.org/10.5194/piahs-387-17-2024, https://doi.org/10.5194/piahs-387-17-2024, 2024
Short summary
Short summary
This study explores the potential of integrating data science models to enhance the predictive capacity of a theory-guided glacier hydrological model for improved river discharge simulations in the Himalayan basins. By combining data science and physical process models, the study addresses the limitations inherent in each approach.
Rijan Bhakta Kayastha and Sunwi Maskey
Proc. IAHS, 387, 59–63, https://doi.org/10.5194/piahs-387-59-2024, https://doi.org/10.5194/piahs-387-59-2024, 2024
Short summary
Short summary
Glacial lake outburst flood (GLOF) modeling of Tsho Rolpa showed that, even if the lake breaches by 20 m in 40 years (from 2021), there will be a sufficient lead time of more than 7 h for early warning and human evacuations in the downstream areas. However, precautionary measures such as community-based GLOF early-warning systems and mechanisms allowing close observation in the case of GLOF events should be established in GLOF-prone regions.
Sujan Thapa, Ragini Vaidya, Mohan Bahadur Chand, and Rijan Bhakta Kayastha
EGUsphere, https://doi.org/10.5194/egusphere-2025-4454, https://doi.org/10.5194/egusphere-2025-4454, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study examines how avalanches striking a glacial lake can cause sudden floods downstream in Nepal's Manaslu region. We used computer simulations to simulate various avalanche sizes and their effects on the lake. These simulations revealed that medium and large avalanches could lead to severe flooding in a short amount of time. This highlights the pressing need for early warning systems and better disaster preparedness to protect at-risk communities.
Kundan Lal Shrestha, Rijan Bhakta Kayastha, and Rakesh Kayastha
Proc. IAHS, 387, 25–31, https://doi.org/10.5194/piahs-387-25-2024, https://doi.org/10.5194/piahs-387-25-2024, 2024
Short summary
Short summary
The Himalayan river basins have complex terrain and lack detailed hydrological and meteorological information. This has motivated us to develop a fast and distributed model named PyGDM to simulate the hydrology of this region, which is home to both glaciers and snow. PyGDM is good at simulating glacier and snow melt. Hence, the model is suitable for studying different aspects of the Himalayan region, such as the impact of climate change and hydropower scenarios.
Rakesh Kayastha, Rijan Bhakta Kayastha, Kundan Lal Shrestha, and Smriti Gurung
Proc. IAHS, 387, 53–58, https://doi.org/10.5194/piahs-387-53-2024, https://doi.org/10.5194/piahs-387-53-2024, 2024
Short summary
Short summary
We have estimated hydropower potential in the two glacierized river basins of the Nepalese Himalayas. The Glacio-hydrological Degree-Day Model (GDM) was used with different geospatial criteria. In order to force the model simulation and to assess potential future hydrological regimes, a variety of climate variables were combined and used. The sensitivity of climate variables and their impact on hydropower potential were investigated with a combination of different climate variables.
Dinesh Joshi, Rijan Bhakta Kayastha, Kundan Lal Shrestha, and Rakesh Kayastha
Proc. IAHS, 387, 17–24, https://doi.org/10.5194/piahs-387-17-2024, https://doi.org/10.5194/piahs-387-17-2024, 2024
Short summary
Short summary
This study explores the potential of integrating data science models to enhance the predictive capacity of a theory-guided glacier hydrological model for improved river discharge simulations in the Himalayan basins. By combining data science and physical process models, the study addresses the limitations inherent in each approach.
Rijan Bhakta Kayastha and Sunwi Maskey
Proc. IAHS, 387, 59–63, https://doi.org/10.5194/piahs-387-59-2024, https://doi.org/10.5194/piahs-387-59-2024, 2024
Short summary
Short summary
Glacial lake outburst flood (GLOF) modeling of Tsho Rolpa showed that, even if the lake breaches by 20 m in 40 years (from 2021), there will be a sufficient lead time of more than 7 h for early warning and human evacuations in the downstream areas. However, precautionary measures such as community-based GLOF early-warning systems and mechanisms allowing close observation in the case of GLOF events should be established in GLOF-prone regions.