Articles | Volume 386
https://doi.org/10.5194/piahs-386-209-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-386-209-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Attributing weather patterns to Davao River extreme rainfall from Reanalysis and GCM
Ralph Allen Acierto
CORRESPONDING AUTHOR
International Center for Water Hazard and Risk Management, Public Works Research Institute, Tsukuba, Japan
Tomoki Ushiyama
International Center for Water Hazard and Risk Management, Public Works Research Institute, Tsukuba, Japan
Toshio Koike
International Center for Water Hazard and Risk Management, Public Works Research Institute, Tsukuba, Japan
Related authors
Badri Bhakta Shrestha, Mohamed Rasmy, Tomoki Ushiyama, Ralph Allen Acierto, Takatoshi Kawamoto, Masakazu Fujikane, Hiroyuki Ito, and Takafumi Shinya
Proc. IAHS, 386, 127–132, https://doi.org/10.5194/piahs-386-127-2024, https://doi.org/10.5194/piahs-386-127-2024, 2024
Short summary
Short summary
A strong correlation between extreme rainfall and damaged paddy area in the past period was observed and the floods may affect rice paddies when 1-d or 4-d rainfall exceeds 25 mm or 71 mm. Flood inundation and rice crop damage might be more severe in the future due to climate change than in the past period. The average rice crop damage per year is approximately two times higher for the future period than for past period, suggesting more serious rice crop damage in future due to climate change.
Roshan Indika Jayasinghe, Mohamad Rasmy, and Toshio Koike
Proc. IAHS, 386, 291–297, https://doi.org/10.5194/piahs-386-291-2024, https://doi.org/10.5194/piahs-386-291-2024, 2024
Short summary
Short summary
This focused on my experience as an Engineer in the Mahaweli River basin. Simultaneously, Floods & droughts are the major problems in this basin, I tried to use the upper reservoirs to control these disasters by finding the reasons and ways to manage these difficulties by using gathered knowledge at ICHARM. This helps me to understand the conflict among stakeholders, and find the reasons and solutions for efficient water management in the system, by developing a physical model based on policies.
Akshay Kowlesser, Mohamed Rasmy, and Toshio Koike
Proc. IAHS, 386, 271–276, https://doi.org/10.5194/piahs-386-271-2024, https://doi.org/10.5194/piahs-386-271-2024, 2024
Short summary
Short summary
A flood management plan for the Grand River North West basin in Mauritius was developed to address the risks associated with climate change-induced flooding. Historical and projected climatic data were analyzed to discern trends in flood occurrence. A hydrological model was constructed to simulate the basin’s response to extreme flood events, and a Geographic Information System-based model was created for flood vulnerability map using exposure, susceptibility and resilience indicators.
Abdul Wahid Mohamed Rasmy, Maksym Gusyev, Katsunori Tamakawa, Miho Ohara, and Toshio Koike
Proc. IAHS, 386, 265–270, https://doi.org/10.5194/piahs-386-265-2024, https://doi.org/10.5194/piahs-386-265-2024, 2024
Short summary
Short summary
To support decision-makers in flood disaster management, a real-time flood monitoring system was established in the Niger and Volta basins under the Water disaster platform to enhance climate resilience in Africa (WADiRE-Africa). The system utilized real-time satellite rainfall data to bridge the gap between data scarcity and inaccessibility and a hydrological model to simulate the inundation extents at basin and hotspot scales. Presently, the prototype system is under testing in both basins.
Badri Bhakta Shrestha, Mohamed Rasmy, Tomoki Ushiyama, Ralph Allen Acierto, Takatoshi Kawamoto, Masakazu Fujikane, Hiroyuki Ito, and Takafumi Shinya
Proc. IAHS, 386, 127–132, https://doi.org/10.5194/piahs-386-127-2024, https://doi.org/10.5194/piahs-386-127-2024, 2024
Short summary
Short summary
A strong correlation between extreme rainfall and damaged paddy area in the past period was observed and the floods may affect rice paddies when 1-d or 4-d rainfall exceeds 25 mm or 71 mm. Flood inundation and rice crop damage might be more severe in the future due to climate change than in the past period. The average rice crop damage per year is approximately two times higher for the future period than for past period, suggesting more serious rice crop damage in future due to climate change.
Fauziana Ahmad, Kosei Yamaguchi, Eiichi Nakakita, and Tomoki Ushiyama
Proc. IAHS, 386, 61–67, https://doi.org/10.5194/piahs-386-61-2024, https://doi.org/10.5194/piahs-386-61-2024, 2024
Short summary
Short summary
The vertical vorticity and both Zdr and Kdp columns analysis provided an insight into the transition from single-cell to multicell development, which is beneficial in the detection of severe weather resulting in flash floods.
Mihretab G. Tedla, Mohamed Rasmy, Toshio Koike, and Li Zhou
Proc. IAHS, 386, 223–228, https://doi.org/10.5194/piahs-386-223-2024, https://doi.org/10.5194/piahs-386-223-2024, 2024
Short summary
Short summary
The study provides valuable insights into the use of cutting-edge technologies for real-time extreme flow modelling and disaster risk reduction strategies in data-scarce regions. The methodology presented here improved forecasting lead time and accuracy of real-time satellite precipitations. This highlights the practical implications of public domain datasets and models for informed decision-making. The study can complement informed decision-making for flood preparedness in transboundary basins.
Osamu Itagaki, Miho Ohara, and Toshio Koike
Proc. IAHS, 386, 153–158, https://doi.org/10.5194/piahs-386-153-2024, https://doi.org/10.5194/piahs-386-153-2024, 2024
Short summary
Short summary
This paper presents a trial estimation result of quantitative flood damage reduction effect by installing a spillway on a riverine levee in a protected area for promoting the “River Basin Disaster Resilience and Sustainability by All” (Ryuuiki-chisui) initiative which is strongly promoted in Japan. The result shows that flood damage is considerably reduced, e.g. average annual damage to paddy fields in the area can be expected to decrease, although the inundation frequency will increase.
Cited articles
Breuer, L., Gosling, S. N., Yang, T., Hoffmann, P., Hattermann, F. F., Krysnaova, V., Wada, Y., Su, B., Masaki, Y., Müller, C., Daggupati, P., Stacke, T., Fekete, B., Motovilov, Y., Vetter, T., Flörke, F., Liersch, S., Donnelly, C., and Samaniego, L.: Sources of uncertainty in hydrological climate impact assessment: a cross-scale study, Environ. Res. Lett., 13, 015006, https://doi.org/10.1088/1748-9326/aa9938, 2017. a
Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gangopadhyay, S., Wood, A. W., Fowler, H. J., Prudhomme, C., Arnold, J. R., and Brekke, L. D.: Characterizing Uncertainty of the Hydrologic Impacts of Climate Change, Current Climate Change Reports, 2, 55–64, https://doi.org/10.1007/s40641-016-0034-x, 2016. a, b, c
Davis, L. L. B.: ProPlot (v0.9.5), Zenodo [code], https://doi.org/10.5281/zenodo.3873878, 2021. a
Elson, P., Sales de Andrade, E., Lucas, G., May, R., Hattersley, R., Campbell, E., Dawson, A., Little, B., Raynaud, S., scmc72, Snow, A. D., Comer, R., Donkers, K., Blay, B., Killick, P., Wilson, N., Peglar, P., lgolston, lbdreyer, Szymaniak, A. J., Berchet, A., Bosley C., Davis, L., Krasting, F. J., Bradbury, M., Kirkham, D., stephenworsley, and Havlin, C.: SciTools/cartopy: v0.22.0 (v0.22.0), Zenodo [code], https://doi.org/10.5281/zenodo.1182735, 2023. a
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, https://doi.org/10.1002/joc.1556, 2007. a
Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., O'Rourke, E., Rixen, M., Solman, S., Stephenson, T., and Tangang, F.: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6, Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, 2016. a
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hoyer, S., Roos, M., Joseph, H., Magin, J., Cherian, D., Fitzgerald, C., Hauser, M., Fujii, K., Maussion, F., Imperiale, G., Clark, S., Kleeman, A., Nicholas, T., Kluyver, T., Westling, J., Munroe, J., Amici, A., Barghini, A., Banihirwe, A., Bell, R., Hatfield-Dodds, Z., Abernathey, R., Bovy, B., Omotani, J., Mühlbauer, K., Roszko, M. K., and Wolfram, P. J.: xarray (v2024.02.0), Zenodo [code], https://doi.org/10.5281/zenodo.598201, 2024. a
Ito, R., Nakaegawa, T., and Takayabu, I.: Comparison of regional characteristics of land precipitation climatology projected by an MRI-AGCM multi-cumulus scheme and multi-SST ensemble with CMIP5 multi-model ensemble projections, Prog. Earth Planet. Sc., 7, 77, https://doi.org/10.1186/s40645-020-00394-4, 2020. a, b
Maraun, D.: Bias Correcting Climate Change Simulations – a Critical Review, Current Climate Change Reports, 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016. a
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M., Hall, A., and Mearns, L. O.: Towards process-informed bias correction of climate change simulations, Nat. Clim. Change, 7, 764–773, https://doi.org/10.1038/nclimate3418, 2017. a, b
May, R., Arms, S., kpozsonyi, Haberlie, A., Marsh, P., deeplycloudy, mmorello1, Goebbert, K., Leeman, J., and Helmus, J. J.: metpy/MetPy: 0.4 (v0.4.0), Zenodo [code], https://doi.org/10.5281/zenodo.160750, 2016. a
Meresa, H., Tischbein, B., and Mekonnen, T.: Climate change impact on extreme precipitation and peak flood magnitude and frequency: observations from CMIP6 and hydrological models, Natural Hazards, 111, 2649–2679, https://doi.org/10.1007/s11069-021-05152-3, 2022. a
Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T., Kamiguchi, K., Hosaka, M., Sugi, M., Yukimoto, S., Kusunoki, S., and Kitoh, A.: Climate simulations using MRI-AGCM3.2 with 20-km grid, J. Meteorol. Soc. Jpn., 90, 233–258, https://doi.org/10.2151/jmsj.2012-A12, 2012. a, b
Mori, N., Takemi, T., Tachikawa, Y., Tatano, H., Shimura, T., Tanaka, T., Fujimi, T., Osakada, Y., Webb, A., and Nakakita, E.: Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia, Weather and Climate Extremes, 32, 100309, https://doi.org/10.1016/j.wace.2021.100309, 2021. a
Murakami, H., Wang, B., and Kitoh, A.: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model, J. Climate, 24, 1154–1169, https://doi.org/10.1175/2010JCLI3723.1, 2011. a
Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E., Adachi, Y., Yukimoto, S., Hosaka, M., Kusunoki, S., Ose, T., and Kitoh, A.: Future Changes in Tropical Cyclone Activity Projected by the New High-Resolution MRI-AGCM*, J. Climate, 25, 3237–3260, https://doi.org/10.1175/JCLI-D-11-00415.1, 2012. a
Neelin, J. D., Martinez-Villalobos, C., Stechmann, S. N., Ahmed, F., Chen, G., Norris, J. M., Kuo, Y. H., and Lenderink, G.: Precipitation Extremes and Water Vapor: Relationships in Current Climate and Implications for Climate Change, Current Climate Change Reports, 8, 17–33, https://doi.org/10.1007/s40641-021-00177-z, 2022. a
Pfahl, S., O'Gorman, P. A., and Fischer, E. M.: Understanding the regional pattern of projected future changes in extreme precipitation, Nat. Clim. Change, 7, 423–427, https://doi.org/10.1038/nclimate3287, 2017. a
Shepherd, T. G.: Storyline approach to the construction of regional climate change information, P. Roy. Soc. A, 475, 834–860, https://doi.org/10.1098/rspa.2019.0013, 2019. a, b
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F., Trenberth, K. E., van den Hurk, B. J., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Storylines: an alternative approach to representing uncertainty in physical aspects of climate change, Clim. Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018. a
Teutschbein, C. and Seibert, J.: Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies, Geography Compass, 4, 834–860, https://doi.org/10.1111/j.1749-8198.2010.00357.x, 2010. a
The pandas development team: pandas-dev/pandas: Pandas (v2.2.1), Zenodo [code], https://doi.org/10.5281/zenodo.3509134, 2024. a
Wood, E. F., Lettenmaier, D., Liang, X., Nijssen, B., and Wetzel, S. W.: Hydrological Modeling of Continental-Scale Basins, Annu. Rev. Earth Planet. Sc., 25, 279–300, https://doi.org/10.1146/annurev.earth.25.1.279, 1997. a
Short summary
The study evaluated how well a GCM can reproduce the past weather patterns linked to the heavy rainfall events in Davao river basin by using raingauge and ERA5 data as reference. Our findings show that MRI-AGCM 3.2S reproduced similar weather patterns in JJA and DJF seasons as compared to ERA5 but due to small differences in configuration lead to biases in the local rainfall. This method can be also applied to other river basins and for evaluating how the future local rainfall will change.
The study evaluated how well a GCM can reproduce the past weather patterns linked to the heavy...