Articles | Volume 385
https://doi.org/10.5194/piahs-385-477-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-385-477-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How can altimetry data be used for water resources management (SDG 6.5.1)? Development of a method using altimetry data from the Envisat, Jason, Jason 2 and Sentinel 3A satellites
Thomas Legay
CORRESPONDING AUTHOR
BRL Ingénierie. 1105, av. Pierre Mendès-France BP 94001, 30001 Nîmes cedex 5, France
Yoann Aubert
BRL Ingénierie. 1105, av. Pierre Mendès-France BP 94001, 30001 Nîmes cedex 5, France
EDF Hydro – DTG, Département Eau – Environnement, Service Prévision, 4, rue Claude-Marie PERROUD – Bat A, 31100 TOULOUSE CEDEX, France
Julien Verdonck
BRL Ingénierie. 1105, av. Pierre Mendès-France BP 94001, 30001 Nîmes cedex 5, France
Jérémy Guilhen
CLS Group – Pôle Terre et Hydrologie, 11 rue Hermès, Parc Technologique du Canal 31520 Ramonville Saint-Agne, France
Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
Adrien Paris
Hydro Matters, 1 Chemin de la Pousaraque, 31460 Le Faget, France
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS (Toulouse), France
Hydro Matters, 1 Ch. De la Pousaraque, 31460 Le Faget, France
Jean-Michel Martinez
IRD – Institut de recherche pour le Développement, 14 Avenue Edouard Belin, 31400 Toulouse, France
Sabine Sauvage
Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
Pankyes Datok
AE-FUNAI EBONYI STATE NIGERIA, 44JR+PG7, IKWO IKWO LGA, Abakaliki, Nigeria
Vanessa Dos Santos
Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
José Miquel Sanchez-Perez
Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
Stéphane Bruxelles
CENEAU, 265 avenue de l'Industrie 34 820 Teyran, France
Emeric Lavergne
CLS Group – Pôle Terre et Hydrologie, 11 rue Hermès, Parc Technologique du Canal 31520 Ramonville Saint-Agne, France
Franck Mercier
CLS Group – Pôle Terre et Hydrologie, 11 rue Hermès, Parc Technologique du Canal 31520 Ramonville Saint-Agne, France
Related authors
No articles found.
Sara Sirviente, Juan Jesús Gomiz-Pascual, Marina Bolado-Penagos, Sabine Sauvage, José Miguel Sánchez-Pérez, and Miguel Bruno
EGUsphere, https://doi.org/10.5194/egusphere-2024-2451, https://doi.org/10.5194/egusphere-2024-2451, 2024
Short summary
Short summary
The study analyzes how anthropogenic pressures affect saltwater intrusion in the Guadalquivir estuary using a 1D hydrodynamic model. Water extraction by human activities has caused excessive intrusion of the salt wedge, altering the natural state of the system. A better understanding of the effects of these activities is essential to protect the ecosystems of the estuary.
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024, https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Short summary
This study aims to take into account irrigation withdrawals in a watershed model. The model we used combines agriculture and hydrological modeling. Two different crop models were compared, the first based on air temperature and the second based on Sentinel-2 satellite data. Results show that including remote sensing data leads to better emergence dates. Both methods allow us to simulate the daily irrigation withdrawals and downstream flow with a good accuracy, especially during low-flow periods.
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023, https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
Short summary
The surface water storage (SWS) in the Congo River basin (CB) remains unknown. In this study, the multi-satellite and hypsometric curve approaches are used to estimate SWS in the CB over 1992–2015. The results provide monthly SWS characterized by strong variability with an annual mean amplitude of ~101 ± 23 km3. The evaluation of SWS against independent datasets performed well. This SWS dataset contributes to the better understanding of the Congo basin’s surface hydrology using remote sensing.
Benjamin Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Stephane Calmant, Ayan Santos Fleischmann, Frederic Frappart, Melanie Becker, Mohammad J. Tourian, Catherine Prigent, and Johary Andriambeloson
Hydrol. Earth Syst. Sci., 26, 1857–1882, https://doi.org/10.5194/hess-26-1857-2022, https://doi.org/10.5194/hess-26-1857-2022, 2022
Short summary
Short summary
This study presents a better characterization of surface hydrology variability in the Congo River basin, the second largest river system in the world. We jointly use a large record of in situ and satellite-derived observations to monitor the spatial distribution and different timings of the Congo River basin's annual flood dynamic, including its peculiar bimodal pattern.
Sakaros Bogning, Frédéric Frappart, Gil Mahé, Adrien Paris, Raphael Onguene, Fabien Blarel, Fernando Niño, Jacques Etame, and Jean-Jacques Braun
Proc. IAHS, 384, 181–186, https://doi.org/10.5194/piahs-384-181-2021, https://doi.org/10.5194/piahs-384-181-2021, 2021
Short summary
Short summary
This paper investigates links between rainfall variability in the Ogooué River Basin (ORB) and El Niño Southern Oscillation (ENSO) in the Pacific Ocean. Recent hydroclimatology studies of the ORB and surrounding areas resulting in contrasting conclusions about links between rainfall variability and ENSO. Then, this work uses cross-wavelet and wavelet coherence analysis to highlight significant links between ENSO and rainfall in the ORB.
P.-M. Brunet, P. Lassalle, S. Baillarin, B. Vallet, A. Le Bris, G. Romeyer, G. Le Besnerais, F. Weissgerber, G. Foulon, V. Gaudissart, C. Triquet, M. Darques, G. Souille, L. Gabet, C. Ferrero, T.-L. Huynh, and E. Lavergne
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 817–823, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-817-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-817-2021, 2021
B. Carpentier, A. Masse, E. Lavergne, and C. Sannier
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 915–922, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-915-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-915-2021, 2021
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Ling Zhang, Jianzhong Lu, Xiaoling Chen, Dong Liang, Xiaokang Fu, Sabine Sauvage, and José-Miguel Sanchez Perez
Hydrol. Earth Syst. Sci., 21, 5847–5861, https://doi.org/10.5194/hess-21-5847-2017, https://doi.org/10.5194/hess-21-5847-2017, 2017
Short summary
Short summary
To solve the problem of estimating and verifying stream flow without direct observation data, we estimated stream flow in ungauged zones by coupling a hydrological model with a hydrodynamic model, using the Poyang Lake Basin as a test case. To simulate the stream flow of the ungauged zone, we built a SWAT model for the ungauged zone and verified the ungauged stream flow by comparing the two lake model scenarios with and without considering the ungauged stream flow.
Cited articles
Anastasiadis, A., Magoulas Goerge, D., and Vrahatis Michael, N.: New globally convergent training scheme based on the resilient propagation algorithm, Neurocomputing, 64, 253–270, 2005.
Andriambeloson, J. A., Paris, A., Calmant, S., and Rakotondraompiana, S.: Reinitiating depth-discharge monitoring in small-sized ungauged watersheds by combining remote sensing and hydrological modelling: a case study in Madagascar, Hydrolog. Sci. J., 65, 2709–2728, 2020.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model development, J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 2007.
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT mission and its capabilities for land hydrology, Surv. Geophys., 37, 307–337, https://doi.org/10.1002/2014GL062764, 2016.
Bogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet, J.-P., Seyler, F., Onguéné, R., Etamé, J., Paiz, M.-C., and Braun, J.-J: Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: the case of the Ogooué, Remote Sens.-Basel, 10, 350, https://doi.org/10.3390/rs10020350, 2018.
Bogning, S., Frappart, F., Paris, A., Blarel, F., Niño, F., Picart, S. S., Lanet, P., Seyler, F., Mahé, G., Onguene, R., Bricquet, J.-P., Etame, J., Paiz, M.-C., and Braun, J.-J.: Hydro-climatology study of the Ogooué River basin using hydrological modeling and satellite altimetry, Adv. Space Res., 68, 672–690, https://doi.org/10.1016/j.asr.2020.03.045, 2020.
Garambois, P. A., Calmant, S., Roux, H., Paris, A., Monnier, J., Finaud-Guyot, P., Montazem, A. S., and Santos da Silva, J.: Hydraulic visibility: Using satellite altimetry to parameterize a hydraulic model of an ungauged reach of a braided river, Hydrol. Process., 31, 756–767, https://doi.org/10.1002/hyp.11033, 2017.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, 2009.
Huang, Q., Long, D., Du, M., Han, Z., and Han, P.: Daily continuous river discharge estimation for ungauged basins using a hydrological model calibrated by satellite altimetry: implications for the SWOT Mission, Water Resour. Res., 56, 537–546, https://doi.org/10.1029/2020WR027309, 2020.
Intrator, O. and Intrator, N.: Using Neural Nets for Interpretation of Nonlinear Models, Proceedings of the Statistical Computing Section, 244–249, 1993.
Lebel, T., Taupin, J., and D'Amato, N.: Rainfall monitoring during HAPEX-Sahel. 1. General rainfall conditions and climatology, J. Hydrol., 189, 74–96, https://doi.org/10.1016/S0022-1694(96)03155-1, 1997.
Le Moine, N.: Le bassin versant vu par le souterrain: une voie d'amélioration des performances et du réalisme des modèles pluie-débit ?, PhD, Université Pierre et Marie Curie, École Doctorale 398 Géosciences et Ressources Naturelles, France, 348 pp., https://hal.inrae.fr/view/index/identifiant/tel-02591478, 2008.
Li, J. and Heap, A.: A review of Spatial Interpolation Methods for environmental scientists, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia, 137 pp., 2008.
Paiva, R., Buarque, D., Collischonn, W., Bonnet, M.-P., and Frappart, F.: Large-scale hydrological and hydrodynamic modelling of the Amazon River basin, Water Resour. Res., 49, 1226–1243, 2013.
Paris, A.: Utilisation conjointe de données d'altimétrie satellitaire et de modélisation pour le calcul des débits distribués dans le bassin amazonien, PhD, Université Paul Sabatier – Toulouse III, 289 pp., https://theses.hal.science/tel-01357059, 2015.
Paris, A., Dias de Paiva, R., Santos da Silva, J., Medeiros Moreira, D., Calmant, S., Garambois, P. A., and Seyler, F.: Stage-discharge rating curves based on satellite altimetry and modeled discharge on the Amazon basin, Water Resour. Res., 52, 3787–3814, 2016.
Poncelet, C., Andréassian, V., Oudin, L., and Perrin, C.: The Quantile Solidarity approach for the parsimonious regionalization of flow duration curves, Hydrolog. Sci. J., 62, 1364–1380, 2017.
Riedmiller, M. and Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm, ProSceedings of the IEEE International Conference on Neural Networks (ICNN), San Francisco, CA, USA, 586–591, https://doi.org/10.1109/ICNN.1993.298623, 1993.
Saadi, M., Oudin, L., and Ribstein, P.: Random Forest Ability in Regionalizing Hourly Hydrological Model Parameters, Water, 11, 1540, https://doi.org/10.3390/w11081540, 2019.
Satge, A., Defrance, D., Sultan, B., Bonnet, M.-P., Seyler, F., Rouché, N., Pierron, F., and Paturel, J.: Evaluation of 23 gridded precipitation datasets across West Africa, J. Hydrol., 581, 124412, https://doi.org/10.1016/j.jhydrol.2019.124412, 2020.
Vörösmarty, C., Askew, A., Grabs, W., Barry, R. G., Birkett, C., Döll, P., Goodison, B., Hall, A., Jenne, R., Kitaev, L., Landwehr, J., Keeler., M., Leavesley, G., Schaake, J., Strzepek, K., Sundarvel, S. S., Takeuchi, K., and Webster, F.: Global water data: A newly endangered species, Eos, 82, 54–58, https://doi.org/10.1029/01EO00031, 2001.
Short summary
Water resources management traditionally relies on the use of in situ data. Spatial altimetry data is a new source of data for water resources monitoring. Through two projects, various partners (BRLi, IRD, CNES, CLS, CNRS, CENEAU) developed a method based on the combination of hydrological models, in-situ and satellite data to enhance the use of spatial altimetry data for water resources management. This article proposes to evaluate the implemented method.
Water resources management traditionally relies on the use of in situ data. Spatial altimetry...