Articles | Volume 385
https://doi.org/10.5194/piahs-385-155-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-385-155-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling human impacts on surface and subsurface hydrological drought
Tesfaye Belay Senbeta
CORRESPONDING AUTHOR
Department of Hydrology and Hydrodynamics, Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Krzysztof Kochanek
Department of Hydrology and Hydrodynamics, Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Emilia Karamuz
Department of Hydrology and Hydrodynamics, Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Jaroslaw Jan Napiorkowski
Department of Hydrology and Hydrodynamics, Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Related authors
No articles found.
Monika Barbara Kalinowska, Kaisa Västilä, Michael Nones, Adam Kiczko, Emilia Karamuz, Andrzej Brandyk, Adam Kozioł, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 27, 953–968, https://doi.org/10.5194/hess-27-953-2023, https://doi.org/10.5194/hess-27-953-2023, 2023
Short summary
Short summary
Vegetation is commonly found in rivers and channels. Using field investigations, we evaluated the influence of different vegetation coverages on the flow and mixing in the small naturally vegetated channel. The obtained results are expected to be helpful for practitioners, enlarge our still limited knowledge, and show the further required scientific directions for a better understanding of the influence of vegetation on the flow and mixing of dissolved substances in real natural conditions.
W. G. Strupczewski, K. Kochanek, and E. Bogdanowicz
Nat. Hazards Earth Syst. Sci., 14, 1543–1551, https://doi.org/10.5194/nhess-14-1543-2014, https://doi.org/10.5194/nhess-14-1543-2014, 2014
K. Kochanek, B. Renard, P. Arnaud, Y. Aubert, M. Lang, T. Cipriani, and E. Sauquet
Nat. Hazards Earth Syst. Sci., 14, 295–308, https://doi.org/10.5194/nhess-14-295-2014, https://doi.org/10.5194/nhess-14-295-2014, 2014
K. Kochanek, W. G. Strupczewski, E. Bogdanowicz, W. Feluch, and I. Markiewicz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-6001-2013, https://doi.org/10.5194/nhessd-1-6001-2013, 2013
Manuscript not accepted for further review
W. G. Strupczewski, K. Kochanek, E. Bogdanowicz, and I. Markiewicz
Hydrol. Earth Syst. Sci., 17, 3111–3125, https://doi.org/10.5194/hess-17-3111-2013, https://doi.org/10.5194/hess-17-3111-2013, 2013
Cited articles
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model development, Journal of the Americal Water Resources Association, 34, 73–89, 1998.
Bąk, B. and Kubiak-Wójcicka, K.: Impact of meteorological drought on hydrological drought in Toruń (central Poland) in the period of 1971–2015, Journal of Water and Land Development, 32, 3–12, https://doi.org/10.1515/jwld-2017-0001, 2017.
Di Baldassarre, G., Martinez, F., Kalantari, Z., and Viglione, A.: Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation, Earth Syst. Dynam., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, 2017.
Bazrkar, M. H. and Chu, X.: New Standardized Base Flow Index for Identification of Hydrologic Drought in the Red River of the North Basin, Nat. Hazards Rev., 21, 05020011, https://doi.org/10.1061/(asce)nh.1527-6996.0000414, 2020.
Bergström, S. and Forsman, A.: Development of a conceptual deterministic rainfall-runoff model, Hydrol. Res., 4, 147–170, https://doi.org/10.2166/nh.1973.0012, 1973.
Copernicus: CORINE Land Cover, Copernicus [data set], https://land.copernicus.eu/pan-european/corine-land-cover, last access: 4 November 2020.
Gudmundsson, L. and Seneviratne, S. I.: Anthropogenic climate change affects meteorological drought risk in Europe, Environ. Res. Lett., 11, 044005, https://doi.org/10.1088/1748-9326/11/4/044005, 2016.
Harrigan, S., Murphy, C., Hall, J., Wilby, R. L., and Sweeney, J.: Attribution of detected changes in streamflow using multiple working hypotheses, Hydrol. Earth Syst. Sci., 18, 1935–1952, https://doi.org/10.5194/hess-18-1935-2014, 2014.
Jiang, C., Xiong, L., Wang, D., Liu, P., Guo, S., and Xu, C. Y.: Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters, J. Hydrol. (Amst), 522, 326–338, https://doi.org/10.1016/j.jhydrol.2014.12.060, 2015.
Jiao, D., Wang, D., and Lv, H.: Effects of human activities on hydrological drought patterns in the Yangtze River Basin, China, Nat. Hazards, 104, 1111–1124, https://doi.org/10.1007/s11069-020-04206-2, 2020.
Kang, H. and Sridhar, V.: Combined statistical and spatially distributed hydrological model for evaluating future drought indices in Virginia, J. Hydrol. Reg. Stud., 12, 253–272, https://doi.org/10.1016/j.ejrh.2017.06.003, 2017.
Karamuz, E., Bogdanowicz, E., Senbeta, T. B., Napiórkowski, J. J., and Romanowicz, R. J.: Is It a Drought or Only a Fluctuation in Precipitation Patterns? – Drought Reconnaissance in Poland, Water (Basel), 13, 807, https://doi.org/10.3390/w13060807, 2021.
Kubiak-Wójcicka, K. and Bąk, B.: Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland), Environ. Monit. Assess., 190, 87–100, https://doi.org/10.1007/s10661-018-7058-8, 2018.
Liu, B., Zhou, X., Li, W., Lu, C., and Shu, L.: Spatiotemporal Characteristics of Groundwater Drought in Jiangsu Province, China, Water (Basel), 8, 480, https://doi.org/10.3390/w8110480, 2016.
Liu, Y., Ren, L., Zhu, Y., Yang, X., Yuan, F., Jiang, S., and Ma, M.: Evolution of Hydrological Drought in Human Disturbed Areas: A Case Study in the Laohahe Catchment, Northern China, Adv. Meteorol., 2016, 5102568, https://doi.org/10.1155/2016/5102568, 2016.
Marcinkowski, P. and Grygoruk, M.: Long-term downstream effects of a dam on a lowland river flow regime: Case study of the upper narew, Water (Switzerland), 9, 783, https://doi.org/10.3390/w9100783, 2017.
Mckee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, in: Proceedings of the Eighth Conference on Applied Climatology, 17–22 January 1992, Anaheim, California, American Meteorological Society, 179–184, https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (last access: 4 April 2023), 1993.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: “Panta Rhei-Everything Flows”: Change in hydrology and society-The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J., 58, 1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Nalbantis, I. and Tsakiris, G.: Assessment of hydrological drought revisited, Water Resour. Manag., 23, 881–897, https://doi.org/10.1007/s11269-008-9305-1, 2009.
Nasiri, N., Asghari, K., and Besalatpour, A. A.: Quantitative analysis of the human intervention impacts on hydrological drought in the Zayande-Rud River Basin, Iran, J. Water Clim. Change, 13, 3473–3495, https://doi.org/10.2166/wcc.2022.188, 2022.
Piniewski, M., Szcześniak, M., Kardel, I., Berezowski, T., Okruszko, T., Srinivasan, R., Vikhamar Schuler, D., and Kundzewicz, Z. W.: Hydrological modelling of the Vistula and Odra river basins using SWAT, Hydrolog. Sci. J., 62, 1266–1289, https://doi.org/10.1080/02626667.2017.1321842, 2017.
Qiu, L., Peng, D., Xu, Z., and Liu, W.: Identification of the impacts of climate changes and human activities on runoff in the upper and middle reaches of the Heihe River basin, China, J. Water Clim. Change, 7, 251–262, https://doi.org/10.2166/wcc.2015.115, 2016.
Raczyński, K.: Influence of a Multipurpose Retention Reservoir on Extreme River Flows, a Case Study of the Nielisz Reservoir on the Wieprz River (Eastern Poland), Water Resour., 47, 29–40, 2020.
Rangecroft, S., Van Loon, A. F., Maureira, H., Verbist, K., and Hannah, D. M.: An observation-based method to quantify the human influence on hydrological drought: upstream–downstream comparison, Hydrolog. Sci. J., 64, 276–287, https://doi.org/10.1080/02626667.2019.1581365, 2019.
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012.
Senbeta, T. B. and Romanowicz, R. J.: The role of climate change and human interventions in affecting watershed runoff responses, Hydrol. Process., 35, e14448, https://doi.org/10.1002/hyp.14448, 2021.
TAMU (Texas A&M University): ArcSWAT: ArcGIS interface for SWAT 2012, TAMU [code], https://swat.tamu.edu/software/arcswat/, last access: 23 September 2021.
UZH (University of Zurich): HBV-light, UZH [code], https://www.geo.uzh.ch/en/units/h2k/Services/HBV-Model/HBV-Download.html, last access: 24 October 2021.
van Loon, A. F. and van Lanen, H. A. J.: Making the distinction between water scarcity and drought using an observation-modeling framework, Water Resour. Res., 49, 1483–1502, https://doi.org/10.1002/wrcr.20147, 2013.
Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, T., Van Dijk, A. I. J. M., Tallaksen, L. M., Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., and Van Lanen, H. A. J.: Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches, Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, 2016a.
van Loon, A. F., Gleeson, T., Clark, J., van Dijk, A. I. J. M., Stahl, K., Hannaford, J., Di Baldassarre, G., Teuling, A. J., Tallaksen, L. M., Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., Rangecroft, S., Wanders, N., and Van Lanen, H. A. J.: Drought in the Anthropocene, Nat. Geosci., 9, 89–91, https://doi.org/10.1038/ngeo2646, 2016b.
Wanders, N. and Wada, Y.: Human and climate impacts on the 21st century hydrological drought, J. Hydrol. (Amst), 526, 208–220, https://doi.org/10.1016/j.jhydrol.2014.10.047, 2015.
Wittenberg, H.: Baseflow recession and recharge as nonlinear storage processes, Hydrol. Process., 13, 715–726, https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N, 1999.
Wu, J., Chen, X., Yu, Z., Yao, H., Li, W., and Zhang, D.: Assessing the impact of human regulations on hydrological drought development and recovery based on a “simulated-observed” comparison of the SWAT model, J. Hydrol. (Amst), 577, 123990, https://doi.org/10.1016/j.jhydrol.2019.123990, 2019.
Zou, L., Xia, J., and She, D.: Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China, Water Resour. Manag., 32, 1421–1438, https://doi.org/10.1007/s11269-017-1877-1, 2017.
Short summary
The classical assumption that droughts are caused solely by climatic factors is outdated in a human-modified world. This study models the impact of human activities on the hydrological characteristics of droughts using two rainfall-runoff models. The study shows that both models demonstrate similar positive and negative impacts, despite differences in magnitude. The results emphasize the need for an integrated approach to water resources management that considers both climatic and human factors.
The classical assumption that droughts are caused solely by climatic factors is outdated in a...