Articles | Volume 384 
            
                
                    
            
            
            https://doi.org/10.5194/piahs-384-25-2021
                    © Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-384-25-2021
                    © Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Estimation bayésienne des courbes de tarage et des incertitudes associées : application de la méthode BaRatin au Congo à Brazzaville
Jérôme Le Coz
CORRESPONDING AUTHOR
                                            
                                    
                                            INRAE, UR RiverLy, Lyon, France
                                        
                                    Guy D. Moukandi N'kaya
                                            LMEI, CUSI/ENSP, Université Marien N'gouabi, Brazzaville,
République du Congo
                                        
                                    Jean-Pierre Bricquet
                                            HSM, IRD, CNRS, UM, Montpellier, France
                                        
                                    Alain Laraque
                                            GET, CNRS/IRD/UPS, Toulouse, France
                                        
                                    Benjamin Renard
                                            INRAE, UR RiverLy, Lyon, France
                                        
                                    Related authors
William Santini, Alexandre Delort-Ylla, Jean Michel Martinez, Waldo Lavado-Casimiro, Benoît Camenen, Jérôme Le Coz, Joana Roussillon, Jhonathan Junior Pérez Arévalo, and Jorge Molina-Carpio
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4101, https://doi.org/10.5194/egusphere-2025-4101, 2025
                                    This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS). 
                                    Short summary
                                    Short summary
                                            
                                                This study presents the first long-term hydro-sediment balance of the Ucayali River using observations, remote sensing, and SWAT-Amazon. The river exports 455 Mt yr⁻¹ of sediment, 36 % trapped in the floodplain. Floodplain recycling contributes 22 %, while a newly identified sand deposition process during floods decouples sediment from water fluxes. The study highlights the need for robust hydrological networks and regional assessments to better capture Amazonian sediment dynamics.
                                            
                                            
                                        Mathieu Lucas, Michel Lang, Benjamin Renard, and Jérôme Le Coz
                                    Hydrol. Earth Syst. Sci., 28, 5031–5047, https://doi.org/10.5194/hess-28-5031-2024, https://doi.org/10.5194/hess-28-5031-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The proposed flood frequency model accounts for uncertainty in the perception threshold S and the starting date of the historical period. Using a 500-year-long case study, inclusion of historical floods reduces the uncertainty in flood quantiles, even when only the number of exceedances of S is known. Ignoring threshold uncertainty leads to underestimated flood quantile uncertainty. This underlines the value of using a comprehensive framework for uncertainty estimation.
                                            
                                            
                                        Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
                                    Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
                                            
                                            
                                        Hugo Lepage, Alexandra Gruat, Fabien Thollet, Jérôme Le Coz, Marina Coquery, Matthieu Masson, Aymeric Dabrin, Olivier Radakovitch, Jérôme Labille, Jean-Paul Ambrosi, Doriane Delanghe, and Patrick Raimbault
                                    Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022, https://doi.org/10.5194/essd-14-2369-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several particle-bound contaminants along the Rhône River downstream of Lake Geneva. These data allow us to understand the dynamics and origins. They show the impact of flood events which mainly contribute to a decrease in the contaminant concentrations while fluxes are significant. On the contrary, concentrations are higher during low flow periods probably due to the increase of organic matter.
                                            
                                            
                                        William Santini, Alexandre Delort-Ylla, Jean Michel Martinez, Waldo Lavado-Casimiro, Benoît Camenen, Jérôme Le Coz, Joana Roussillon, Jhonathan Junior Pérez Arévalo, and Jorge Molina-Carpio
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4101, https://doi.org/10.5194/egusphere-2025-4101, 2025
                                    This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS). 
                                    Short summary
                                    Short summary
                                            
                                                This study presents the first long-term hydro-sediment balance of the Ucayali River using observations, remote sensing, and SWAT-Amazon. The river exports 455 Mt yr⁻¹ of sediment, 36 % trapped in the floodplain. Floodplain recycling contributes 22 %, while a newly identified sand deposition process during floods decouples sediment from water fluxes. The study highlights the need for robust hydrological networks and regional assessments to better capture Amazonian sediment dynamics.
                                            
                                            
                                        François Colleoni, Ngo Nghi Truyen Huynh, Pierre-André Garambois, Maxime Jay-Allemand, Didier Organde, Benjamin Renard, Thomas De Fournas, Apolline El Baz, Julie Demargne, and Pierre Javelle
                                    Geosci. Model Dev., 18, 7003–7034, https://doi.org/10.5194/gmd-18-7003-2025, https://doi.org/10.5194/gmd-18-7003-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We present smash, an open-source framework for high-resolution hydrological modeling and data assimilation. It combines process-based models with neural networks for regionalization, enabling accurate simulations from the catchment scale to the country scale. With an efficient, differentiable solver, smash supports large-scale calibration and parallel computing. Tested on open datasets, it shows strong performance in river flow prediction, making it a valuable tool for research and operational use.
                                            
                                            
                                        Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
                                    Hydrol. Earth Syst. Sci., 29, 3589–3613, https://doi.org/10.5194/hess-29-3589-2025, https://doi.org/10.5194/hess-29-3589-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Understanding and modeling flash-flood-prone areas remains challenging due to limited data and scale-relevant hydrological theory. While machine learning shows promise, its integration with process-based models is difficult. We present an approach incorporating machine learning into a high-resolution hydrological model to correct internal fluxes and transfer parameters between watersheds. Results show improved accuracy, advancing the development of learnable and interpretable process-based models.
                                            
                                            
                                        Mathieu Lucas, Michel Lang, Benjamin Renard, and Jérôme Le Coz
                                    Hydrol. Earth Syst. Sci., 28, 5031–5047, https://doi.org/10.5194/hess-28-5031-2024, https://doi.org/10.5194/hess-28-5031-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The proposed flood frequency model accounts for uncertainty in the perception threshold S and the starting date of the historical period. Using a 500-year-long case study, inclusion of historical floods reduces the uncertainty in flood quantiles, even when only the number of exceedances of S is known. Ignoring threshold uncertainty leads to underestimated flood quantile uncertainty. This underlines the value of using a comprehensive framework for uncertainty estimation.
                                            
                                            
                                        Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
                                    Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
                                            
                                            
                                        Hugo Lepage, Alexandra Gruat, Fabien Thollet, Jérôme Le Coz, Marina Coquery, Matthieu Masson, Aymeric Dabrin, Olivier Radakovitch, Jérôme Labille, Jean-Paul Ambrosi, Doriane Delanghe, and Patrick Raimbault
                                    Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022, https://doi.org/10.5194/essd-14-2369-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several particle-bound contaminants along the Rhône River downstream of Lake Geneva. These data allow us to understand the dynamics and origins. They show the impact of flood events which mainly contribute to a decrease in the contaminant concentrations while fluxes are significant. On the contrary, concentrations are higher during low flow periods probably due to the increase of organic matter.
                                            
                                            
                                        Alice César Fassoni-Andrade, Fabien Durand, Daniel Moreira, Alberto Azevedo, Valdenira Ferreira dos Santos, Claudia Funi, and Alain Laraque
                                    Earth Syst. Sci. Data, 13, 2275–2291, https://doi.org/10.5194/essd-13-2275-2021, https://doi.org/10.5194/essd-13-2275-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We present a seamless dataset of river, land, and ocean topography of the Amazon River estuary with a 30 m spatial resolution. An innovative remote sensing approach was used to estimate the topography of the intertidal flats, riverbanks, and adjacent floodplains. Amazon River bathymetry was generated from digitized nautical charts. The novel dataset opens up a broad range of opportunities, providing the poorly known underwater digital topography required for environmental sciences.
                                            
                                            
                                        Cited articles
                        
                        Alsdorf, D., Beighley, D., Laraque, A., Lee, H., Tshimanga, R., O'Loughlin, F.,
Mahé, G., Dinga, B., Moukandi N'kaya, G., and Spencer, R. G. M. : Opportunities
for hydrologic research in the Congo Basin, Rev. Geophys., 54, 378–409,
https://doi.org/10.1002/2016RG000517, 2016. 
                    
                
                        
                        Darienzo, M., Le Coz, J., Renard, B., and Lang, M. : Detection of
stage-discharge rating shifts using gaugings : a recursive segmentation
procedure accounting for observational and model uncertainties, Water
Resour. Res., 57, e2020WR028607, https://doi.org/10.1029/2020WR028607, 2021. 
                    
                
                        
                        Devroey, E. J. : Annuaire hydrologique du Congo belge et du Ruanda-Urundi,
Académie royale des Sciences coloniales, Classe des Sciences Techniques,
Mémoires in-8∘, Nouvelle série, Tome X, fasc. 1,
Bruxelles, 1957.
 
                    
                
                        
                        Horner, I., Renard, B., Le Coz, J., Branger, F., McMillan, H. K., and Pierrefeu,
G. : Impact of stage measurement errors on streamflow uncertainty, Water
Resour. Res., 54, 1952–1976, 2018. 
                    
                
                        
                        Joint Committee for Guides in
Metrology (JCGM 100) : 2008 : Evaluation of measurement data – Guide to the expression of
uncertainty in measurement (GUM), JCGM (Joint Committee for Guides in
Metrology), BIPM, Sèvres, France, 2008. 
                    
                
                        
                        Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Le Coz, J., Westerberg, I.,
Belleville, A., Sevrez, D., Sikorsk, A. E., Petersen-Øverleir, A., Reitan, T.,
Freer, J., Renard, B., Mansanarez, V., and Mason, R. : A comparison of methods for
streamflow uncertainty estimation, Water Resour. Res., 54, 7149–7176,
2018. 
                    
                
                        
                        Le Coz, J., Renard, B., Bonnifait, L., Branger, F., and Le Boursicaud, R. :
Combining hydraulic knowledge and uncertain gaugings in the estimation of
hydrometric rating curves : a Bayesian approach, J. Hydrol., 509,
573–587, 2014. 
                    
                
                        
                        Lempicka, M. : Bilan hydrique du bassin du fleuve Zaïre. I : Ecoulement du
bassin 1950–1959, Office National de la Recherche et du Développement,
Kinshasa, République Démocratique du Congo, 1973. 
                    
                
                        
                        Mateba 22 : Observations Limnimétriques : Kinshasa-Matadi-Boma, Inventaire
1903–1983 Navigabilité du bief maritime du fleuve Zaïre,
Laboratoire de Recherches Hydrauliques, Borgerhout, Chatelet, Royaume de
Belgique, 1984. 
                    
                
                        
                        Molinier, M. : Note sur les débits et la qualité des eaux du Congo
à Brazzaville, Cah, ORSTOM Série Hydrol., 16, 55–66, 1979. 
                    
                
                        
                        Moukandi N'kaya, G. D., Orange, D., Bayonne Padou, S. M., Datok, P., and Laraque, A. :
Temporal variability of sediments, dissolved solids and dissolved organic
matter fluxes in the Congo River at Brazzaville/Kinshasa, Geosciences, 10,
341, https://doi.org/10.3390/geosciences10090341, 2020. 
                    
                
                        
                        Van Ganse, R. : Les débits du fleuve Congo à Léopoldville et à
Inga, Bull. Séanc. Acad. r. Sci. colon., Bruxelles, nouvelle série,
5, 737–763, 1959. 
                    
                 
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
             
             
            