Articles | Volume 384
https://doi.org/10.5194/piahs-384-25-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-384-25-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation bayésienne des courbes de tarage et des incertitudes associées : application de la méthode BaRatin au Congo à Brazzaville
Jérôme Le Coz
CORRESPONDING AUTHOR
INRAE, UR RiverLy, Lyon, France
Guy D. Moukandi N'kaya
LMEI, CUSI/ENSP, Université Marien N'gouabi, Brazzaville,
République du Congo
Jean-Pierre Bricquet
HSM, IRD, CNRS, UM, Montpellier, France
Alain Laraque
GET, CNRS/IRD/UPS, Toulouse, France
Benjamin Renard
INRAE, UR RiverLy, Lyon, France
Related authors
Mathieu Lucas, Michel Lang, Benjamin Renard, and Jérôme Le Coz
Hydrol. Earth Syst. Sci., 28, 5031–5047, https://doi.org/10.5194/hess-28-5031-2024, https://doi.org/10.5194/hess-28-5031-2024, 2024
Short summary
Short summary
The proposed flood frequency model accounts for uncertainty in the perception threshold S and the starting date of the historical period. Using a 500-year-long case study, inclusion of historical floods reduces the uncertainty in flood quantiles, even when only the number of exceedances of S is known. Ignoring threshold uncertainty leads to underestimated flood quantile uncertainty. This underlines the value of using a comprehensive framework for uncertainty estimation.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Hugo Lepage, Alexandra Gruat, Fabien Thollet, Jérôme Le Coz, Marina Coquery, Matthieu Masson, Aymeric Dabrin, Olivier Radakovitch, Jérôme Labille, Jean-Paul Ambrosi, Doriane Delanghe, and Patrick Raimbault
Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022, https://doi.org/10.5194/essd-14-2369-2022, 2022
Short summary
Short summary
The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several particle-bound contaminants along the Rhône River downstream of Lake Geneva. These data allow us to understand the dynamics and origins. They show the impact of flood events which mainly contribute to a decrease in the contaminant concentrations while fluxes are significant. On the contrary, concentrations are higher during low flow periods probably due to the increase of organic matter.
Mathieu Lucas, Michel Lang, Benjamin Renard, and Jérôme Le Coz
Hydrol. Earth Syst. Sci., 28, 5031–5047, https://doi.org/10.5194/hess-28-5031-2024, https://doi.org/10.5194/hess-28-5031-2024, 2024
Short summary
Short summary
The proposed flood frequency model accounts for uncertainty in the perception threshold S and the starting date of the historical period. Using a 500-year-long case study, inclusion of historical floods reduces the uncertainty in flood quantiles, even when only the number of exceedances of S is known. Ignoring threshold uncertainty leads to underestimated flood quantile uncertainty. This underlines the value of using a comprehensive framework for uncertainty estimation.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Hugo Lepage, Alexandra Gruat, Fabien Thollet, Jérôme Le Coz, Marina Coquery, Matthieu Masson, Aymeric Dabrin, Olivier Radakovitch, Jérôme Labille, Jean-Paul Ambrosi, Doriane Delanghe, and Patrick Raimbault
Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022, https://doi.org/10.5194/essd-14-2369-2022, 2022
Short summary
Short summary
The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several particle-bound contaminants along the Rhône River downstream of Lake Geneva. These data allow us to understand the dynamics and origins. They show the impact of flood events which mainly contribute to a decrease in the contaminant concentrations while fluxes are significant. On the contrary, concentrations are higher during low flow periods probably due to the increase of organic matter.
Alice César Fassoni-Andrade, Fabien Durand, Daniel Moreira, Alberto Azevedo, Valdenira Ferreira dos Santos, Claudia Funi, and Alain Laraque
Earth Syst. Sci. Data, 13, 2275–2291, https://doi.org/10.5194/essd-13-2275-2021, https://doi.org/10.5194/essd-13-2275-2021, 2021
Short summary
Short summary
We present a seamless dataset of river, land, and ocean topography of the Amazon River estuary with a 30 m spatial resolution. An innovative remote sensing approach was used to estimate the topography of the intertidal flats, riverbanks, and adjacent floodplains. Amazon River bathymetry was generated from digitized nautical charts. The novel dataset opens up a broad range of opportunities, providing the poorly known underwater digital topography required for environmental sciences.
Santiago Paul Yepez, Alain Laraque, Carlo Gualtieri, Frédéric Christophoul, Claudio Marchan, Bartolo Castellanos, Jose Manuel Azocar, Jose Luis Lopez, and Juan Alfonso
Proc. IAHS, 377, 41–50, https://doi.org/10.5194/piahs-377-41-2018, https://doi.org/10.5194/piahs-377-41-2018, 2018
Short summary
Short summary
Enhancing knowledge of the role of morphological changes (volume) with this new methodology is an opportunity to gain better understanding of river bed sediment transport. This type of study will support dredging projects in the Orinoco River to maintain navigability, which will contribute to the management of this important river basin.
Cited articles
Alsdorf, D., Beighley, D., Laraque, A., Lee, H., Tshimanga, R., O'Loughlin, F.,
Mahé, G., Dinga, B., Moukandi N'kaya, G., and Spencer, R. G. M. : Opportunities
for hydrologic research in the Congo Basin, Rev. Geophys., 54, 378–409,
https://doi.org/10.1002/2016RG000517, 2016.
Darienzo, M., Le Coz, J., Renard, B., and Lang, M. : Detection of
stage-discharge rating shifts using gaugings : a recursive segmentation
procedure accounting for observational and model uncertainties, Water
Resour. Res., 57, e2020WR028607, https://doi.org/10.1029/2020WR028607, 2021.
Devroey, E. J. : Annuaire hydrologique du Congo belge et du Ruanda-Urundi,
Académie royale des Sciences coloniales, Classe des Sciences Techniques,
Mémoires in-8∘, Nouvelle série, Tome X, fasc. 1,
Bruxelles, 1957.
Horner, I., Renard, B., Le Coz, J., Branger, F., McMillan, H. K., and Pierrefeu,
G. : Impact of stage measurement errors on streamflow uncertainty, Water
Resour. Res., 54, 1952–1976, 2018.
Joint Committee for Guides in
Metrology (JCGM 100) : 2008 : Evaluation of measurement data – Guide to the expression of
uncertainty in measurement (GUM), JCGM (Joint Committee for Guides in
Metrology), BIPM, Sèvres, France, 2008.
Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Le Coz, J., Westerberg, I.,
Belleville, A., Sevrez, D., Sikorsk, A. E., Petersen-Øverleir, A., Reitan, T.,
Freer, J., Renard, B., Mansanarez, V., and Mason, R. : A comparison of methods for
streamflow uncertainty estimation, Water Resour. Res., 54, 7149–7176,
2018.
Le Coz, J., Renard, B., Bonnifait, L., Branger, F., and Le Boursicaud, R. :
Combining hydraulic knowledge and uncertain gaugings in the estimation of
hydrometric rating curves : a Bayesian approach, J. Hydrol., 509,
573–587, 2014.
Lempicka, M. : Bilan hydrique du bassin du fleuve Zaïre. I : Ecoulement du
bassin 1950–1959, Office National de la Recherche et du Développement,
Kinshasa, République Démocratique du Congo, 1973.
Mateba 22 : Observations Limnimétriques : Kinshasa-Matadi-Boma, Inventaire
1903–1983 Navigabilité du bief maritime du fleuve Zaïre,
Laboratoire de Recherches Hydrauliques, Borgerhout, Chatelet, Royaume de
Belgique, 1984.
Molinier, M. : Note sur les débits et la qualité des eaux du Congo
à Brazzaville, Cah, ORSTOM Série Hydrol., 16, 55–66, 1979.
Moukandi N'kaya, G. D., Orange, D., Bayonne Padou, S. M., Datok, P., and Laraque, A. :
Temporal variability of sediments, dissolved solids and dissolved organic
matter fluxes in the Congo River at Brazzaville/Kinshasa, Geosciences, 10,
341, https://doi.org/10.3390/geosciences10090341, 2020.
Van Ganse, R. : Les débits du fleuve Congo à Léopoldville et à
Inga, Bull. Séanc. Acad. r. Sci. colon., Bruxelles, nouvelle série,
5, 737–763, 1959.