Articles | Volume 383
https://doi.org/10.5194/piahs-383-51-2020
https://doi.org/10.5194/piahs-383-51-2020
Post-conference publication
 | 
16 Sep 2020
Post-conference publication |  | 16 Sep 2020

Changing climate and implications for water use in the Hetao Basin, Yellow River, China

Ian White, Tingbao Xu, Jicai Zeng, Jian Yu, Xin Ma, Jinzhong Yang, Zailin Huo, and Hang Chen

Related authors

A novel regional irrigation water productivity model coupling irrigation- and drainage-driven soil hydrology and salinity dynamics and shallow groundwater movement in arid regions in China
Jingyuan Xue, Zailin Huo, Shuai Wang, Chaozi Wang, Ian White, Isaya Kisekka, Zhuping Sheng, Guanhua Huang, and Xu Xu
Hydrol. Earth Syst. Sci., 24, 2399–2418, https://doi.org/10.5194/hess-24-2399-2020,https://doi.org/10.5194/hess-24-2399-2020, 2020
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration, FAO Irrigation and Drainage Paper 56, FAO, Rome, 300 pp., 1998. 
Hao, P. and Yang, J.: Spatial distribution of crop evapotranspiration in Hetao Irrigation District based on NDVI and FAO56 Penman–Monteith, J. Irrig. Drain., 35, 20–25, 2016. 
Hargreaves, G. H.: Simplified coefficients for estimating monthly solar radiation in North America and Europe, Departmental Paper, Dept. of Biol. And Irrig. Engrg., Utah State University, Logan, Utah, 1994. 
Hargreaves, G. H. and Allen, E. G.: History and evaluation of Hargreaves evapotranspiration equation, J. Irrig. Drain. Eng., 129, 53–63, https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53), 2003. 
Download
Short summary
Balancing water allocations between upstream irrigated agriculture and downstream users and environments is a major challenge in China's Yellow River. Increasing temperatures in the Hetao Irrigation District indicate that solar radiation has decreased over the past 50 years but surprisingly actual evaporation has not changed. Expansion of the length of the irrigation growing season due to increasing temperatures could lead to higher demands for irrigation.