Articles | Volume 383
https://doi.org/10.5194/piahs-383-297-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-383-297-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Groundwater Drought Initiative (GDI): Analysing and understanding groundwater drought across Europe
British Geological Survey, Keyworth, NG12 5GG, UK
Daniela Cuba
British Geological Survey, Keyworth, NG12 5GG, UK
John P. Bloomfield
British Geological Survey, Wallingford, OX10 8BB, UK
David M. Hannah
School of Geography, Earth and Environmental Sciences, University
of Birmingham, Birmingham, B15 2TT, UK
Christopher Jackson
British Geological Survey, Keyworth, NG12 5GG, UK
Ben P. Marchant
British Geological Survey, Keyworth, NG12 5GG, UK
Benedikt Heudorfer
School of Geography, Earth and Environmental Sciences, University
of Birmingham, Birmingham, B15 2TT, UK
Anne F. Van Loon
School of Geography, Earth and Environmental Sciences, University
of Birmingham, Birmingham, B15 2TT, UK
now at: Institute for Environmental Studies, Vrije Universiteit
Amsterdam, the Netherlands
Hélène Bessière
BRGM – Bureau de Recherches Géologiques et Minières, 45060
Orléans, France
Bo Thunholm
Geological Survey of Sweden, 751 28 Uppsala, Sweden
Gerhard Schubert
Geological Survey of Austria, 1030 Vienna, Austria
Related authors
No articles found.
Ileen N. Streefkerk, Jeroen C. J. H. Aerts, Jens de Bruijn, Khalid Hassaballah, Rhoda Odongo, Teun Schrieks, Oliver Wasonga, and Anne F. Van Loon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2382, https://doi.org/10.5194/egusphere-2024-2382, 2024
Short summary
Short summary
In East Africa are conflict over water and vegetation prominent. On top of that, water abstraction of commercial farms are increasing the competition of water. Therefore, this study has developed a model which can investigate what the influence is of these farming activities on the water balance of the region and people's livelihood activities in times of dry periods. We do that by ‘replacing’ the farms in the model, and see what the effect would be if there were communities or forests instead.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2715, https://doi.org/10.5194/egusphere-2024-2715, 2024
Short summary
Short summary
Persistent droughts change how rivers respond to rainfall. Our study of over 5,000 catchments worldwide found that hydrological and soil moisture droughts decrease river flow response to rain, especially in arid regions, while vegetation decline slightly increases it. Snow-covered areas are more resilient due to stored water buffering changes. Droughts can also cause long-lasting changes, with short, intense droughts reducing river response to rainfall and prolonged droughts increasing it.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1742, https://doi.org/10.5194/egusphere-2024-1742, 2024
Short summary
Short summary
Extreme rainfall comprises a major hydro-hazard for New Zealand, and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographic setting.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-863, https://doi.org/10.5194/egusphere-2024-863, 2024
Short summary
Short summary
Glaciers in the tropics are poorly-observed, making it difficult to predict how they will retreat in the future. Most computer models neglect important processes that control tropical glacier retreat. We combine two existing models to remedy this limitation. Our model replicates observed changes in glacier retreat and shows us where our process understanding limits the accuracy of predictions and which processes are less important than we previously thought, helping to direct future research.
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci., 28, 1215–1249, https://doi.org/10.5194/hess-28-1215-2024, https://doi.org/10.5194/hess-28-1215-2024, 2024
Short summary
Short summary
This study examines about 8000 groundwater level (GWL) time series from five continents to explore similarities in groundwater systems at different scales. Statistical metrics and machine learning techniques are applied to identify common GWL dynamics patterns and analyze their controlling factors. The study also highlights the potential and limitations of this data-driven approach to improve our understanding of groundwater recharge and discharge processes.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Short summary
We build a neural network to predict groundwater levels from monitoring wells. We predict all wells at the same time, by learning the differences between wells with static features, making it an entity-aware global model. This works, but we also test different static features and find that the model does not use them to learn exactly how the wells are different, but only to uniquely identify them. As this model class is not actually entity aware, we suggest further steps to make it so.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Kathryn A. Leeming, John P. Bloomfield, Gemma Coxon, and Yanchen Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-202, https://doi.org/10.5194/hess-2023-202, 2023
Preprint withdrawn
Short summary
Short summary
In this work we characterise annual patterns in baseflow, the component of streamflow that comes from subsurface storage. Our research identified early-, mid-, and late-seasonality of baseflow across catchments in Great Britain over two time blocks: 1976–1995 and 1996–2015, and found that many catchments have earlier seasonal patterns of baseflow in the second time period. These changes are linked to changes in climate signals: snow-melt in highland catchments and effective rainfall changes.
Rhoda A. Odongo, Hans De Moel, and Anne F. Van Loon
Nat. Hazards Earth Syst. Sci., 23, 2365–2386, https://doi.org/10.5194/nhess-23-2365-2023, https://doi.org/10.5194/nhess-23-2365-2023, 2023
Short summary
Short summary
We characterize meteorological (P), soil moisture (SM) and hydrological (Q) droughts and the propagation from one to the other for 318 catchments in the Horn of Africa. We find that propagation from P to SM is influenced by soil properties and vegetation, while propagation from P to Q is from catchment-scale hydrogeological properties (i.e. geology, slope). We provide precipitation accumulation periods at the subbasin level that can be used as a proxy in drought forecasting in dryland regions.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Abrar Habib, Athanasios Paschalis, Adrian P. Butler, Christian Onof, John P. Bloomfield, and James P. R. Sorensen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-27, https://doi.org/10.5194/hess-2023-27, 2023
Preprint withdrawn
Short summary
Short summary
Components of the hydrological cycle exhibit a “memory” in their behaviour which quantifies how long a variable would stay at high/low values. Being able to model and understand what affects it is vital for an accurate representation of the hydrological elements. In the current work, it is found that rainfall affects the fractal behaviour of groundwater levels, which implies that changes to rainfall due to climate change will change the periods of flood and drought in groundwater-fed catchments.
Raed Hamed, Sem Vijverberg, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 14, 255–272, https://doi.org/10.5194/esd-14-255-2023, https://doi.org/10.5194/esd-14-255-2023, 2023
Short summary
Short summary
Spatially compounding soy harvest failures can have important global impacts. Using causal networks, we show that soy yields are predominately driven by summer soil moisture conditions in North and South America. Summer soil moisture is affected by antecedent soil moisture and by remote extra-tropical SST patterns in both hemispheres. Both of these soil moisture drivers are again influenced by ENSO. Our results highlight physical pathways by which ENSO can drive spatially compounding impacts.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Lisa Baulon, Nicolas Massei, Delphine Allier, Matthieu Fournier, and Hélène Bessiere
Hydrol. Earth Syst. Sci., 26, 2829–2854, https://doi.org/10.5194/hess-26-2829-2022, https://doi.org/10.5194/hess-26-2829-2022, 2022
Short summary
Short summary
Aquifers often act as low-pass filters, dampening high-frequency (intra-annual) and amplifying low-frequency (LFV, multi-annual to multidecadal) variabilities originating from climate variability. By processing groundwater level signals, we show the key role of LFV in the occurrence of groundwater extremes (GWEs). Results highlight how changes in LFV may impact future GWEs as well as the importance of correct representation of LFV in general circulation model outputs for GWE projection.
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467, https://doi.org/10.5194/hess-26-2449-2022, https://doi.org/10.5194/hess-26-2449-2022, 2022
Short summary
Short summary
We highlight the importance of the North Atlantic Oscillation in controlling droughts in the UK. Specifically, multi-year cycles in the NAO are shown to influence the frequency of droughts and this influence changes considerably over time. We show that the influence of these varying controls is similar to the projected effects of climate change on water resources. We also show that these time-varying behaviours have important implications for water resource forecasts used for drought planning.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Marthe L. K. Wens, Anne F. van Loon, Ted I. E. Veldkamp, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 22, 1201–1232, https://doi.org/10.5194/nhess-22-1201-2022, https://doi.org/10.5194/nhess-22-1201-2022, 2022
Short summary
Short summary
In this paper, we present an application of the empirically calibrated drought risk adaptation model ADOPT for the case of smallholder farmers in the Kenyan drylands. ADOPT is used to evaluate the effect of various top-down drought risk reduction interventions (extension services, early warning systems, ex ante cash transfers, and low credit rates) on individual and community drought risk (adaptation levels, food insecurity, poverty, emergency aid) under different climate change scenarios.
Raed Hamed, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 12, 1371–1391, https://doi.org/10.5194/esd-12-1371-2021, https://doi.org/10.5194/esd-12-1371-2021, 2021
Short summary
Short summary
Soy yields in the US are affected by climate variability. We identify the main within-season climate drivers and highlight potential compound events and associated agricultural impacts. Our results show that soy yields are most negatively influenced by the combination of high temperature and low soil moisture during the summer crop reproductive period. Furthermore, we highlight the role of temperature and moisture coupling across the year in generating these hot–dry extremes and linked impacts.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Anne F. Van Loon, Imogen Lester-Moseley, Melanie Rohse, Phil Jones, and Rosie Day
Geosci. Commun., 3, 453–474, https://doi.org/10.5194/gc-3-453-2020, https://doi.org/10.5194/gc-3-453-2020, 2020
Short summary
Short summary
The Global South is vulnerable to natural hazards like floods and droughts, but creativity could support community preparedness. We mapped 267 papers that use a variety of art forms. They aim to raise the public's awareness or instigate adaptation by participants. In our pilot in South Africa, community members developed stories about preparing for future drought. This led to an imagination of future events, conversations about adaptation, intergenerational exchange, and increased awareness.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Adam S. Ward, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Skuyler Herzog, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Noah M. Schmadel, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, Nathan I. Wisnoski, and Steven M. Wondzell
Earth Syst. Sci. Data, 11, 1567–1581, https://doi.org/10.5194/essd-11-1567-2019, https://doi.org/10.5194/essd-11-1567-2019, 2019
Short summary
Short summary
Studies of river corridor exchange commonly focus on characterization of the physical, chemical, or biological system. As a result, complimentary systems and context are often lacking, which may limit interpretation. Here, we present a characterization of all three systems at 62 sites in a 5th-order river basin, including samples of surface water, hyporheic water, and sediment. These data will allow assessment of interacting processes in the river corridor.
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019, https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Short summary
We evaluated four hydrological model structures and their parameters on over 1100 catchments across Great Britain, considering modelling uncertainties. Models performed well for most catchments but failed in parts of Scotland and south-eastern England. Failures were often linked to inconsistencies in the water balance. This research shows what conceptual lumped models can achieve, gives insights into where and why these models may fail, and provides a benchmark of national modelling capability.
William Rust, Ian Holman, John Bloomfield, Mark Cuthbert, and Ron Corstanje
Hydrol. Earth Syst. Sci., 23, 3233–3245, https://doi.org/10.5194/hess-23-3233-2019, https://doi.org/10.5194/hess-23-3233-2019, 2019
Short summary
Short summary
We show that major groundwater resources in the UK exhibit strong multi-year cycles, accounting for up to 40 % of total groundwater level variability. By comparing these cycles with recorded widespread groundwater droughts over the past 60 years, we provide evidence that climatic systems (such as the North Atlantic Oscillation) ultimately drive drought-risk periods in UK groundwater. The recursive nature of these drought-risk periods may lead to improved preparedness for future droughts.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, Guðfinna Aðalgeirsdóttir, and Andrew R. Black
Hydrol. Earth Syst. Sci., 23, 1833–1865, https://doi.org/10.5194/hess-23-1833-2019, https://doi.org/10.5194/hess-23-1833-2019, 2019
Short summary
Short summary
We project 21st century change and uncertainty in 25 river flow regime metrics (signatures) for a deglaciating river basin. The results show that glacier-fed river flow magnitude, timing and variability are sensitive to climate change and that projection uncertainty stems from incomplete understanding of future climate and glacier-hydrology processes. These findings indicate how impact studies can be better designed to provide more robust projections of river flow regime in glaciated basins.
Anne F. Van Loon, Sally Rangecroft, Gemma Coxon, José Agustín Breña Naranjo, Floris Van Ogtrop, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 23, 1725–1739, https://doi.org/10.5194/hess-23-1725-2019, https://doi.org/10.5194/hess-23-1725-2019, 2019
Short summary
Short summary
We explore the use of the classic
paired-catchmentapproach to quantify human influence on hydrological droughts. In this approach two similar catchments are compared and differences are attributed to the human activity present in one. In two case studies in UK and Australia, we found that groundwater abstraction aggravated streamflow drought by > 200 % and water transfer alleviated droughts with 25–80 %. Understanding the human influence on droughts can support water management decisions.
John P. Bloomfield, Benjamin P. Marchant, and Andrew A. McKenzie
Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, https://doi.org/10.5194/hess-23-1393-2019, 2019
Short summary
Short summary
Groundwater is susceptible to drought due to natural variations in climate; however, to date there is no evidence of a relationship between climate change and groundwater drought. Using two long groundwater level records from the UK, we document increases in frequency, magnitude and intensity and changes in duration of groundwater drought associated with climate warming and infer that, given the extent of shallow groundwater globally, warming may widely effect changes to groundwater droughts.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, and Guðfinna Aðalgeirsdóttir
The Cryosphere, 12, 2175–2210, https://doi.org/10.5194/tc-12-2175-2018, https://doi.org/10.5194/tc-12-2175-2018, 2018
Short summary
Short summary
We apply a framework to compare and objectively accept or reject competing melt and run-off process models. We found no acceptable models. Furthermore, increasing model complexity does not guarantee better predictions. The results highlight model selection uncertainty and the need for rigorous frameworks to identify deficiencies in competing models. The application of this approach in the future will help to better quantify model prediction uncertainty and develop improved process models.
Marit Van Tiel, Adriaan J. Teuling, Niko Wanders, Marc J. P. Vis, Kerstin Stahl, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, https://doi.org/10.5194/hess-22-463-2018, 2018
Short summary
Short summary
Glaciers are important hydrological reservoirs. Short-term variability in glacier melt and also glacier retreat can cause droughts in streamflow. In this study, we analyse the effect of glacier changes and different drought threshold approaches on future projections of streamflow droughts in glacierised catchments. We show that these different methodological options result in different drought projections and that these options can be used to study different aspects of streamflow droughts.
Faye L. Jackson, Robert J. Fryer, David M. Hannah, and Iain A. Malcolm
Hydrol. Earth Syst. Sci., 21, 4727–4745, https://doi.org/10.5194/hess-21-4727-2017, https://doi.org/10.5194/hess-21-4727-2017, 2017
Short summary
Short summary
River temperature (Tw) is important to fish populations, but one cannot monitor everywhere. Thus, models are used to predict Tw, sometimes in rivers with no data. To date, the accuracy of these predictions has not been determined. We found that models including landscape predictors (e.g. altitude, tree cover) could describe spatial patterns in Tw in other rivers better than those including air temperature. Such findings are critical for developing Tw models that have management application.
Niko Wanders, Anne F. Van Loon, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-512, https://doi.org/10.5194/hess-2017-512, 2017
Revised manuscript has not been submitted
Short summary
Short summary
This paper investigates the similarities between frequently used drought indicators and how they should be used for global drought monitoring. We find that drought indicators that should monitor drought in the same hydrological domain show high discrepancy in their anomalies and thus drought detection. This shows that the current ways of monitoring drought events is not sufficient to fully capture the complexity of drought events and monitor the socio-economic impact of these large-scale events.
Feng Mao, Julian Clark, Timothy Karpouzoglou, Art Dewulf, Wouter Buytaert, and David Hannah
Hydrol. Earth Syst. Sci., 21, 3655–3670, https://doi.org/10.5194/hess-21-3655-2017, https://doi.org/10.5194/hess-21-3655-2017, 2017
Short summary
Short summary
The paper aims to propose a conceptual framework that supports nuanced understanding and analytical assessment of resilience in socio-hydrological contexts. We identify three framings of resilience for different human–water couplings, which have distinct application fields and are used for different water management challenges. To assess and improve socio-hydrological resilience in each type, we introduce a
resilience canvasas a heuristic tool to design bespoke management strategies.
Cédric L. R. Laizé, Cristian Bruna Meredith, Michael J. Dunbar, and David M. Hannah
Hydrol. Earth Syst. Sci., 21, 3231–3247, https://doi.org/10.5194/hess-21-3231-2017, https://doi.org/10.5194/hess-21-3231-2017, 2017
Short summary
Short summary
Stream temperature controls many river processes, making it vital to know how climate affects it. Climate and stream temperatures at 35 British sites and associated basin properties were used to model climate–water temperature associations and to assess how they are influenced by basins. Associations vary with season and water temperature range. Basin permeability, size, and elevation have the main influence; smaller upland or impermeable basins are the most sensitive to climate.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Anne F. Van Loon, Rohini Kumar, and Vimal Mishra
Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, https://doi.org/10.5194/hess-21-1947-2017, 2017
Short summary
Short summary
Summer 2015 was extremely dry in Europe, hampering groundwater supply to irrigation and drinking water. For effective management, the groundwater situation should be monitored in real time, but data are not available. We tested two methods to estimate groundwater in near-real time, based on satellite data and using the relationship between rainfall and historic groundwater levels. The second method gave a good spatially variable representation of the 2015 groundwater drought in Europe.
Sally Rangecroft, Anne F. Van Loon, Héctor Maureira, Koen Verbist, and David M. Hannah
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2016-57, https://doi.org/10.5194/esd-2016-57, 2016
Preprint withdrawn
Short summary
Short summary
This paper on anthropogenic droughts looks at the interactions of human activity and "natural" processes. Using a case study of the introduction of a reservoir in a Chilean river basin and a new methodology, we established the most effective way forward for quantifying human activities on hydrological drought: the "threshold level" method with an "undisturbed" time period as the threshold. This will increase our understanding on how human activities are impacting the hydrological system.
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
Kerstin Stahl, Irene Kohn, Veit Blauhut, Julia Urquijo, Lucia De Stefano, Vanda Acácio, Susana Dias, James H. Stagge, Lena M. Tallaksen, Eleni Kampragou, Anne F. Van Loon, Lucy J. Barker, Lieke A. Melsen, Carlo Bifulco, Dario Musolino, Alessandro de Carli, Antonio Massarutto, Dionysis Assimacopoulos, and Henny A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, https://doi.org/10.5194/nhess-16-801-2016, 2016
Short summary
Short summary
Based on the European Drought Impact report Inventory (EDII), the study presents an assessment of the occurrence and diversity of drought impacts across Europe. A unique research database has collected close to 5000 textual drought impact reports from 33 European countries. Consistently, reported impacts have been dominated in number by agriculture and water supply, but were very diverse across other sectors. Data and assessment may help drought policy planning at the international level.
Rohini Kumar, Jude L. Musuuza, Anne F. Van Loon, Adriaan J. Teuling, Roland Barthel, Jurriaan Ten Broek, Juliane Mai, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, https://doi.org/10.5194/hess-20-1117-2016, 2016
Short summary
Short summary
In a maiden attempt, we performed a multiscale evaluation of the widely used SPI to characterize local- and regional-scale groundwater (GW) droughts using observations at 2040 groundwater wells in Germany and the Netherlands. From this data-based exploratory analysis, we provide sufficient evidence regarding the inability of the SPI to characterize GW drought events, and stress the need for more GW observations and accounting for regional hydrogeological characteristics in GW drought monitoring.
N. Le Vine, A. Butler, N. McIntyre, and C. Jackson
Hydrol. Earth Syst. Sci., 20, 143–159, https://doi.org/10.5194/hess-20-143-2016, https://doi.org/10.5194/hess-20-143-2016, 2016
Short summary
Short summary
– A strategy to diagnose hydrological limitations of a Land Surface Model
– Land Surface Model adaptation for hydrological applications
– Highlights challenges faced while moving towards high resolution modelling
J. P. Bloomfield, B. P. Marchant, S. H. Bricker, and R. B. Morgan
Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, https://doi.org/10.5194/hess-19-4327-2015, 2015
Short summary
Short summary
To improve the design of drought monitoring networks and water resource management during episodes of drought, there is a need for a better understanding of spatial variations in the response of aquifers to major meteorological droughts. This paper is the first to describe a suite of methods to quantify such variations. Using an analysis of groundwater level data for a case study from the UK, the influence of catchment characteristics on the varied response of groundwater to droughts is explored
A. Chiverton, J. Hannaford, I. P. Holman, R. Corstanje, C. Prudhomme, T. M. Hess, and J. P. Bloomfield
Hydrol. Earth Syst. Sci., 19, 2395–2408, https://doi.org/10.5194/hess-19-2395-2015, https://doi.org/10.5194/hess-19-2395-2015, 2015
Short summary
Short summary
Current hydrological change detection methods are subject to a host of limitations. This paper develops a new method, temporally shifting variograms (TSVs), which characterises variability in the river flow regime using several parameters, changes in which can then be attributed to precipitation characteristics. We demonstrate the use of the method through application to 94 UK catchments, showing that periods of extremes as well as more subtle changes can be detected.
C. K. Folland, J. Hannaford, J. P. Bloomfield, M. Kendon, C. Svensson, B. P. Marchant, J. Prior, and E. Wallace
Hydrol. Earth Syst. Sci., 19, 2353–2375, https://doi.org/10.5194/hess-19-2353-2015, https://doi.org/10.5194/hess-19-2353-2015, 2015
Short summary
Short summary
The English Lowlands is a heavily populated, water-stressed region, which is vulnerable to long droughts typically associated with dry winters. We conduct a long-term (1910-present) quantitative analysis of precipitation, flow and groundwater droughts for the region, and then review potential climatic drivers. No single driver is dominant, but we demonstrate a physical link between La Nina conditions, winter rainfall and long droughts in the region.
I. Giuntoli, J.-P. Vidal, C. Prudhomme, and D. M. Hannah
Earth Syst. Dynam., 6, 267–285, https://doi.org/10.5194/esd-6-267-2015, https://doi.org/10.5194/esd-6-267-2015, 2015
Short summary
Short summary
We assessed future changes in high and low flows globally using runoff projections from global hydrological models (GHMs) driven by global climate models (GCMs) under the RCP8.5 scenario. Further, we quantified the relative size of uncertainty from GHMs and from GCMs using ANOVA. We show that GCMs are the major contributors to uncertainty overall, but GHMs increase their contribution for low flows and can equal or outweigh GCM uncertainty in snow-dominated areas for both high and low flows.
A. F. Van Loon, S. W. Ploum, J. Parajka, A. K. Fleig, E. Garnier, G. Laaha, and H. A. J. Van Lanen
Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, https://doi.org/10.5194/hess-19-1993-2015, 2015
Short summary
Short summary
Hydrological drought types in cold climates have complex causing factors and impacts. In Austria and Norway, a lack of snowmelt is mainly related to below-normal winter precipitation, and a lack of glaciermelt is mainly related to below-normal summer temperature. These and other hydrological drought types impacted hydropower production, water supply, and agriculture in Europe and the US in the recent and far past. For selected drought events in Norway impacts could be coupled to causing factors.
G. Garner, I. A. Malcolm, J. P. Sadler, and D. M. Hannah
Hydrol. Earth Syst. Sci., 18, 5361–5376, https://doi.org/10.5194/hess-18-5361-2014, https://doi.org/10.5194/hess-18-5361-2014, 2014
Short summary
Short summary
This study demonstrates the processes by which instantaneous longitudinal water temperature gradients may be generated in a stream reach that transitions from moorland to semi-natural forest in the absence of substantial groundwater inflows. Water did not cool as it flowed downstream. Instead, temperature gradients were generated by a combination of reduced rates of heating in the forested reach and advection of cooler (overnight and early morning) water from the upstream moorland catchment.
B. S. Beyene, A. F. Van Loon, H. A. J. Van Lanen, and P. J. J. F. Torfs
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-12765-2014, https://doi.org/10.5194/hessd-11-12765-2014, 2014
Manuscript not accepted for further review
Short summary
Short summary
This paper explores possible threshold level calculation methods for hydrological drought analysis. We proposed four threshold methods applied to time series of hydrometeorological variables and inter-compared the drought propagation patterns. Our results have shown that these methods can influence the magnitude and severity of droughts differently and even may introduce artefact drought events. Therefore, we suggest the use and checking of these threshold approaches for drought analysis.
J. P. Bloomfield and B. P. Marchant
Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, https://doi.org/10.5194/hess-17-4769-2013, 2013
H. A. J. Van Lanen, N. Wanders, L. M. Tallaksen, and A. F. Van Loon
Hydrol. Earth Syst. Sci., 17, 1715–1732, https://doi.org/10.5194/hess-17-1715-2013, https://doi.org/10.5194/hess-17-1715-2013, 2013
C. Prudhomme, T. Haxton, S. Crooks, C. Jackson, A. Barkwith, J. Williamson, J. Kelvin, J. Mackay, L. Wang, A. Young, and G. Watts
Earth Syst. Sci. Data, 5, 101–107, https://doi.org/10.5194/essd-5-101-2013, https://doi.org/10.5194/essd-5-101-2013, 2013
Cited articles
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013.
Bloomfield, J. P., Marchant, B. P., Bricker, S. H., and Morgan, R. B.: Regional analysis of groundwater droughts using hydrograph classification, Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, 2015.
Changnon, S. A.: Detecting drought conditions in Illinois, Illinois State
Water Survey, Champaign, USA, available at: https://www.isws.illinois.edu/pubdoc/C/ISWSC-169.pdf (last access: 24 July 2020), Circular, 169, 1987.
European Environment Agency (EEA): Groundwater quality and quantity in
Europe, European Environment Agency, Copenhagen, Denmark, 123 pp., 1999.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and
New, M.: A European daily high-resolution gridded dataset of surface
temperature and precipitation, J. Geophys. Res., 113, D20119,
https://doi.org/10.1029/2008JD010201, 2008.
Hisdal, H., Clausen, B., Gustard, A., Peters, E., and Tallaksen, L. M.: Event
definitions and indices, in: Hydrological drought-processes and estimation
methods for streamflow and groundwater, Developments in water sciences 48,
edited by: Tallaksen, L. M. and Van Lanen, H. A. J., Elsevier Sciences B.V.,
Amsterdam, Netherlands, 139–198, 2004.
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
Lange, B., Holman, I., and Bloomfield, J. P.: A framework for a joint
hydro-meteorological-social analysis of drought, Sci. Total Environ., 578,
297–306, https://doi.org/10.1016/j.scitotenv.2016.10.145, 2017.
Marchant, B. P., Mackay, J., and Bloomfield, J. P.: Quantifying uncertainty in
predictions of groundwater levels using formal likelihood methods, J.
Hydrol., 540, 699–711, https://doi.org/10.1016/j.jhydrol.2016.06.014, 2016.
Marchant, B. P. and Bloomfield, J. P.: Spatio-temporal modelling of the status
of groundwater droughts, J. Hydrol., 564, 397–413,
https://doi.org/10.1016/j.jhydrol.2018.07.009, 2018.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, in: Proceedings of the 8th Conference
on Applied Climatology, Anaheim, USA, 17–22 January 1993, 179–184, 1993.
Peters, E., Torfs, P. J. J. F., Van Lanen, H. A. J., and Bier, G.: Propagation of
drought through groundwater – a new approach using linear reservoir theory,
Hydrol. Process., 17, 3023–3040, https://doi.org/10.1002/hyp.1274, 2003.
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.: Impacts of European drought events: insights from an international database of text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016.
Staudinger, M., Stoelzle, M., Cochand, F., Seibert, J., Weiler, M., and
Hunkeler, D.: Your work is my boundary condition!: Challenges and approaches
for a closer collaboration between hydrologists and hydrogeologists, J.
Hydrol., 571, 235–243, https://doi.org/10.1016/j.jhydrol.2019.01.058, 2019.
Svoboda, M., Hayes, M., and Wood, D.: Standardized precipitation index user
guide, World Meteorological Organization, Geneva, Switzerland, 24 pp., 2012.
Svoboda, M. and Fuchs, B. A.: Handbook of drought indicators and indices, in:
Integrated Drought Management Programme (IDMP), integrated Drought
Management Tools and Guidelines Series 2, World Meteorological Organization
(WMO) and Global Water Partnership (GWP), Geneva, Switzerland, 52 pp., 2016.
Tallaksen, L. M., Madsen, H., and Clausen, B.: On the definition and
modelling of streamflow drought duration and deficit volume, Hydrol. Sci.
J., 42, 15–33, https://doi.org/10.1080/02626669709492003, 1997.
Tallaksen, L. M. and Van Lanen, H. A. J. (Eds.): Hydrological drought:
processes and estimation methods for streamflow and groundwater, Elsevier,
Oxford, UK, 579 pp., 2004.
Van Lanen, H. A. J. and Peters, E.: Definition, effects and assessment of
groundwater droughts, in: Drought and Drought Mitigation in Europe, Advances
in Natural and Technological Hazards Research, edited by: Vogt, J. V. and
Somma, F., Springer, Dordrecht, Netherlands, 14, 49–61,
https://doi.org/10.1007/978-94-015-9472-1_4, 2000.
Van Lanen, H. A. J., Wanders, N., Tallaksen, L. M., and Van Loon, A. F.: Hydrological drought across the world: impact of climate and physical catchment structure, Hydrol. Earth Syst. Sci., 17, 1715–1732, https://doi.org/10.5194/hess-17-1715-2013, 2013.
Van Lanen, H. A. J., Laaha, G., Kingston, D. G., Gauster, T., Ionita, M.,
Vidal, J. P., Vlnas, R., Tallaksen, L. M., Stahl, K., Hannaford, J., Delus,
C., Fendekova, M., Mediero, L., Prudhomme, C., Rets, E., Romanowicz, R. J.,
Gailliez, S., Wong, W. K., Adler, M. J., Blauhut, V., Caillouet, L., Chelcea,
S., Frolova, N., Gudmundsson, L., Hanel, M., Haslinger, K., Kireeva, M.,
Osuch, M., Sauquet, E., Stagge, J. H., and Van Loon, A. F.: Hydrology needed
to manage droughts: the 2015 European case, Hydrol. Process., 30, 3097–3104,
https://doi.org/10.1002/hyp.10838, 2016.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F. and Van Lanen, H. A. J.: Making the distinction between water
scarcity and drought using an observation-modeling framework, Water Resour.
Res., 49, 1483–1502, https://doi.org/10.1002/wrcr.20147, 2013.
Van Loon, A. F.: Hydrological drought explained, Wiley Interdiscip. Rev.
Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
Van Loon, A. F. and Laaha, G.: Hydrological drought severity explained by
climate and catchment characteristics, J. Hydrol., 526, 3–14,
https://doi.org/10.1016/j.jhydrol.2014.10.059, 2015.
Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I., Stahl, K.,
Hannaford, J., Di Baldassarre, G., Teuling, A. J., Tallaksen, L. M., and
Uijlenhoet, R.: Drought in the Anthropocene, Nat. Geosci., 9, 89,
https://doi.org/10.1038/ngeo2646, 2016.
Van Loon, A. F., Kumar, R., and Mishra, V.: Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near-real time, Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, 2017.
Short summary
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but droughts may cause groundwater levels to fall below normal. These
groundwater droughtscan limit supply, making it crucial to understand their regional connection. The Groundwater Drought Initiative (GDI) assesses spatial patterns in historic—recent groundwater droughts across Europe for the first time. Using an example dataset, we describe the background to the GDI and its methodological approach.
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but...