Articles | Volume 383
https://doi.org/10.5194/piahs-383-297-2020
https://doi.org/10.5194/piahs-383-297-2020
Post-conference publication
 | 
16 Sep 2020
Post-conference publication |  | 16 Sep 2020

The Groundwater Drought Initiative (GDI): Analysing and understanding groundwater drought across Europe

Bentje Brauns, Daniela Cuba, John P. Bloomfield, David M. Hannah, Christopher Jackson, Ben P. Marchant, Benedikt Heudorfer, Anne F. Van Loon, Hélène Bessière, Bo Thunholm, and Gerhard Schubert

Related authors

GEMS-GER: A Machine Learning Benchmark Dataset of Long-Term Groundwater Levels in Germany with Meteorological Forcings and Site-Specific Environmental Features
Marc Ohmer, Tanja Liesch, Bastian Habbel, Benedikt Heudorfer, Mariana Gomez, Patrick Clos, Maximilian Nölscher, and Stefan Broda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-321,https://doi.org/10.5194/essd-2025-321, 2025
Preprint under review for ESSD
Short summary
Integrating SMART Principles in Flood Early Warning System Design in the Himalayas
Sudhanshu Dixit, Sumit Sen, Tahmina Yasmin, Kieran Khamis, Debashish Sen, Wouter Buytaert, and David Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2025-2081,https://doi.org/10.5194/egusphere-2025-2081, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Drought decreases annual streamflow response to precipitation, especially in arid regions
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 29, 2749–2764, https://doi.org/10.5194/hess-29-2749-2025,https://doi.org/10.5194/hess-29-2749-2025, 2025
Short summary
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025,https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
Physically based modelling of glacier evolution under climate change in the tropical Andes
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
The Cryosphere, 19, 685–712, https://doi.org/10.5194/tc-19-685-2025,https://doi.org/10.5194/tc-19-685-2025, 2025
Short summary

Cited articles

Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013. 
Bloomfield, J. P., Marchant, B. P., Bricker, S. H., and Morgan, R. B.: Regional analysis of groundwater droughts using hydrograph classification, Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, 2015. 
Changnon, S. A.: Detecting drought conditions in Illinois, Illinois State Water Survey, Champaign, USA, available at: https://www.isws.illinois.edu/pubdoc/C/ISWSC-169.pdf (last access: 24 July 2020), Circular, 169, 1987. 
European Environment Agency (EEA): Groundwater quality and quantity in Europe, European Environment Agency, Copenhagen, Denmark, 123 pp., 1999. 
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded dataset of surface temperature and precipitation, J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008. 
Download
Short summary
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but droughts may cause groundwater levels to fall below normal. These groundwater droughts can limit supply, making it crucial to understand their regional connection. The Groundwater Drought Initiative (GDI) assesses spatial patterns in historic—recent groundwater droughts across Europe for the first time. Using an example dataset, we describe the background to the GDI and its methodological approach.
Share