Articles | Volume 382
https://doi.org/10.5194/piahs-382-635-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-382-635-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The potential impact of measures taken by water authorities on greenhouse gas emissions
Anne Marieke Motelica-Wagenaar
CORRESPONDING AUTHOR
Waternet, P.O. Box 94370, Amsterdam, the Netherlands
Tim A. H. M. Pelsma
Waternet, P.O. Box 94370, Amsterdam, the Netherlands
Laura Moria
Waternet, P.O. Box 94370, Amsterdam, the Netherlands
Sarian Kosten
Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9102, 6500 HC Nijmegen, the Netherlands
Related authors
Tim A. H. M. Pelsma, Anne Marieke Motelica-Wagenaar, and Simon Troost
Proc. IAHS, 382, 669–675, https://doi.org/10.5194/piahs-382-669-2020, https://doi.org/10.5194/piahs-382-669-2020, 2020
Anne Marieke Motelica-Wagenaar and Jos Beemster
Proc. IAHS, 382, 643–649, https://doi.org/10.5194/piahs-382-643-2020, https://doi.org/10.5194/piahs-382-643-2020, 2020
Short summary
Short summary
In this paper, greenhouse gas emissions due to peat oxidation were calculated for four different policy scenario's and with four different calculation methods in two polders of the Water Authority Amstel, Gooi and Vecht (the Netherlands). Outcomes depend on calculation methods and assumptions made.
The scenario subsurface irrigation by submerged drains lead to lowest greenhouse gas emissions in this study (it was assumed that subsurface irrigation halves soil subsidence).
Dag O. Hessen, Tom Andersen, David Armstrong McKay, Sarian Kosten, Mariana Meerhoff, Amy Pickard, and Bryan M. Spears
Earth Syst. Dynam., 15, 653–669, https://doi.org/10.5194/esd-15-653-2024, https://doi.org/10.5194/esd-15-653-2024, 2024
Short summary
Short summary
Lakes worldwide are changing and under threat due to stressors such as overload of nutrients, increased input of organic carbon (“browning”), and climate change, which may cause reduced water volume, salinization, or even loss of waterbodies. Some of these changes are abrupt to the extent that they can be characterized as tipping points for that particular system. Such changes may also cause increased release of greenhouse gases, and lakes are major players in the global climate in this context.
Tim A. H. M. Pelsma, Anne Marieke Motelica-Wagenaar, and Simon Troost
Proc. IAHS, 382, 669–675, https://doi.org/10.5194/piahs-382-669-2020, https://doi.org/10.5194/piahs-382-669-2020, 2020
Anne Marieke Motelica-Wagenaar and Jos Beemster
Proc. IAHS, 382, 643–649, https://doi.org/10.5194/piahs-382-643-2020, https://doi.org/10.5194/piahs-382-643-2020, 2020
Short summary
Short summary
In this paper, greenhouse gas emissions due to peat oxidation were calculated for four different policy scenario's and with four different calculation methods in two polders of the Water Authority Amstel, Gooi and Vecht (the Netherlands). Outcomes depend on calculation methods and assumptions made.
The scenario subsurface irrigation by submerged drains lead to lowest greenhouse gas emissions in this study (it was assumed that subsurface irrigation halves soil subsidence).
Ernandes Sobreira Oliveira Junior, Yingying Tang, Sanne J. P. van den Berg, Leon P. M. Lamers, and Sarian Kosten
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-297, https://doi.org/10.5194/bg-2016-297, 2016
Manuscript not accepted for further review
Short summary
Short summary
The differential effects of the aquatic plants on greenhouse gas fluxes may be due to plant density and whether or not the plant roots can access the sediment. We therefore looked into the effect of these two variables on water hyacinth greenhouse gas balance using a laboratory experiment. We found that greenhouse gas dynamics were strongly influenced by plant density and rooting. Our findings pinpoint management options that can optimize carbon sequestration and minimize CH4 emissions.
Raquel Mendonça, Sarian Kosten, Sebastian Sobek, Simone Jaqueline Cardoso, Marcos Paulo Figueiredo-Barros, Carlos Henrique Duque Estrada, and Fábio Roland
Biogeosciences, 13, 3331–3342, https://doi.org/10.5194/bg-13-3331-2016, https://doi.org/10.5194/bg-13-3331-2016, 2016
Short summary
Short summary
Hydroelectric reservoirs in the tropics emit greenhouse gases but also bury carbon in their sediments. We investigated the efficiency of organic carbon (OC) burial in a large tropical reservoir, using spatially resolved measurements of sediment accumulation, and found that more than half (~ 57 %) of the OC deposited onto the sediment is buried. This high efficiency in OC burial indicates that tropical reservoirs may bury OC more efficiently than natural lakes.
S. F. Harpenslager, G. van Dijk, S. Kosten, J. G. M. Roelofs, A. J. P. Smolders, and L. P. M. Lamers
Biogeosciences, 12, 4739–4749, https://doi.org/10.5194/bg-12-4739-2015, https://doi.org/10.5194/bg-12-4739-2015, 2015
Short summary
Short summary
While pristine, growing peatlands are often considered to be net sinks of carbon dioxide (CO2), fluxes vary considerably and these systems can be net sinks or sources of CO2. To explain part of this huge variation, here we present a phenomenon of peat moss (Sphagnum)-driven CO2 production. Due to the acid excreted by Sphagnum, bicarbonate in the surface water is transformed into CO2. Thus, while these systems have high CO2 fixation rates due to growing Sphagnum, they show a net emission of CO2.
Cited articles
Aben, R. C. H., Barros, N., van Donk, E., Frenken, T., Hilt, S., Kazanjian, G., Lamers, L. P. M., Peeters, E. T. H. M., Roelofs, J. G. M., de Senerport Domis, L. N., Stephan, S., Velthuis, M., Van de Waal, D. B., Wik, M., Thomton, B. F., Wilkinson, J., DelSontro, T., and Kosten, S.: Cross continental increase in methane ebullition under climate change, Nat. Commun., 8, 1682, https://doi.org/10.1038/s41467-017-01535-y, 2017.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon
sink, Science, 331, 50, 2011.
Davidson, T. A., Audes, J., Jeppesen, E., Landkildehus, F., Lauridsen, T. L., Søndegaard, M., and Syväranta, J.: Synergy between nutrients and warming enhances methane ebullition from experimental lakes, Nature Clim.
Change, 8, 156–160, 2018.
Deemer B. R., Harrison, J. A., Li, S., Beaulieu, J. J., DelsSontro, T., Barros, N., Bezerra-Neto, J. F., Powers, S. M., Dos Santos, M. A., and Vonk, J. A.: Greenhouse gas emissions from reservoir water surfaces: A new global
synthesis, Bioscience, 66, 949–964, https://doi.org/10.1093/biosci/biw117, 2016.
Elbersen, J. W. H., Verdonschot, P. F. M., Roels, B., and Hartholt, J. G.:
Definitiestudie Kaderrichtlijn Water (KRW), I. Typologie Nederlandse
Oppervlaktewateren, Alterra-rapport 669, available at:
https://library.wur.nl/WebQuery/wurpubs/320649 (last access: 24 February 2020), 2003.
Frijns, J., Mulder, M., and Roorda, J.: Op weg naar een klimaatneutrale
waterketen, STOWA 2008-17, ISBN 978.90.5773.411.3, available at:
https://pdfs.semanticscholar.org/dfde/639a3a184fc107ea6c213064bd8a681f0cee.pdf?_ga=2.70582483.278089143.1582543929-197030730.1582543929 (last access: 24 February 2020), 2008.
Geurts, J. and Fritz, C.: Paludiculture pilots and experiments with focus on cattail and reed in the Netherlands. Technical report CINDERELLA project,
FACCE-JPI ERA-NET Plus on Climate Smart Agriculture, available at:
https://www.veenweiden.nl/wp-content/uploads/2018/08/Rapportage-Paludicultuur-Radboud-Universiteit.pdf
(last access: 24 February 2020), 2018.
Goorts, C. and Kolkhuis Tanke, R.: Klimaatmonitor waterschappen, Verslagjaar 2017, available at:
https://www.uvw.nl/wp-content/uploads/2018/12/Klimaatmonitor-waterschappen-2017.pdf
(last access: 24 February 2020), 2018.
Government of the Netherlands: Klimaatakkoord, available at: https://www.klimaatakkoord.nl/documenten/publicaties/2019/06/28/klimaatakkoord (last access: 24 February 2020), 2019.
Harrison, J. A., Matson, P. A., and Fendorf, S. E.: Effects of a diel oxygen
cycle on nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical stream, Aquat. Sci. 67, 308–315, https://doi.org/10.1007/s00027-005-0776-3, 2005.
Hoving, I. E., van den Akker, J. J. H., Massop, H. T. L., Holshof, G. J., and van Houwelingen, K.: Precisiewatermanagement op veenweidegrond met pompgestuurde onderwaterdrains, Wageningen Livestock Research report No. 1123, Wageningen Livestock Research, Wageningen, https://doi.org/10.18174/461252, 2018.
Huttunen, J. T., Alkm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar,
T., Silvoa, J., and Martikainen, P. J.: Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the
aquatic greenhouse gas emissions, Chemosphere, 52, 609–621, https://doi.org/10.1016/S0045-6535(03)00243-1, 2003.
IPCC: Fifth assessment report, available at:
https://archive.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf (last access: 24 February 2020), 2014.
IPCC: Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas
Inventories, in: chap. 7: Wetlands, available at:
https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (last access: 24 February 2020), 2019.
Jurasinski, G., Günther, A., Huth, V., Couwenberg, J., and Glatzel, S.:
5.1 Greenhouse gas emissions, in: chap. 5 Ecosystem services provided by paludiculture, Paludiculture – productive use of wet peatlands, Climate
protection – biodiversity – regional economic benefits, edited by: Wichtmann, E., Schröder, and Joosten, H., Schweizerbart Science Publishers, Stuttgart, 79–93, 2016.
Koschorreck, M., Downing, A. S., Hejzlar, J., Marcé, R., Laas, A., Arndt, W. G., Keller, P. S., Smolders, A. J. P., van Dijk, G., and Kosten, S.: Hidden treasures: Human-made aquatic ecosystems harbour unexplored
opportunities, Ambio, 49, 531–540, https://doi.org/10.1007/s13280-019-01199-6, 2020.
Moore, T. R. and Dalva, M.: The influence of temperature and water table
position on carbon dioxide and methane emissions from laboratory columns of
peatland soils, J. Soil Sci., 44, 651–664, https://doi.org/10.1111/j.1365-2389.1993.tb02330.x, 1993.
RIVM: Greenhouse gas emissions in the Netherlands 1990–2017, National
Inventory Report 2019, available at:
https://www.rivm.nl/bibliotheek/rapporten/2019-0020.pdf (last access: 24 February 2020), 2019.
Sanches L. F., Guenet, B., Marinho, C. C., Barros, N., and de Assis Esteves,
F.: Global regulation of methane emission from natural lakes, Sci, Rep., 9, 255, https://doi.org/10.1038/s41598-018-36519-5, 2019.
Schrier-Uijl, A. P., Veenendaal, E. M., Leffelaar, P. A., van Huissteden, J. C., and Berendse, F.: Spatial and temporal variation of methane emissions in drained eutrophic peat agro-ecosystems: drainage ditches as emission hotspots, Biogeosciences Discuss., 11, 1237–1261, https://doi.org/10.5194/bgd-5-1237-2008, 2008.
Schrier-Uijl, A. P., Veraart, A. J., Leffelaar, P. A., Berendse, F., and
Veenendaal, E. M.: Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands, Biogeochemistry, 102, 265–279, 2011.
Schrier-Uijl, A. P., Kroon, P. S., Hendriks, D. M. D., Hensen, A., Van Huissteden, J., Berendse, F., and Veenendaal, E. M.: Agricultural peatlands: towards a greenhouse gas sink – a synthesis of a Dutch landscape study, Biogeosciences, 11, 4559–4576, https://doi.org/10.5194/bg-11-4559-2014, 2014.
Snip L., and F. Oesterholt: Berekening CO2-voetafdruk van
drinkwaterbedrijven, KWR PCD 11:2018, Januari 2019, available at:
http://library.wur.nl/WebQuery/hydrotheek/2250061 (last access: 24 February 2020), 2019.
Trolle, D., Staehr, P. A., Davidson, T. A., Bjerring, R., Lauridsen, T. L.,
Søndergaard, M., and Jeppesen, E.: Seasonal dynamics of CO2 flus
across the surface of shallow temperate lakes, Ecosystems, 15, 336–347, 2012.
Troost, S., Kuipers, H., and Hoefsloot, N.: Toekomstverkenning bodemdaling
AGV, Report HJGK/001/162262, Aveco de Bondt, Amersfoort, 2018.
Van Bergen, T. J. H. M., Barros, N., Mendonca, R., Aben, R. C. H., Althuizen, I. H. J.,Huszar, V., Lamers, L. P. M., Lürling, M., Roland, F., and Kosten, S.: Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers, Limnol. Oceanogr., 64, 2129–2139, https://doi.org/10.1002/lno.11173, 2019.
Van den Born, G. J., Kragt, F., Henkens, D., Rijken, B., van Bemmel, B., and
van der Sluis, S.: Dalende bodems, stijgende kosten, Mogelijke maatregelen
tegen veenbodemdaling in het landelijk en stedelijk gebied, PBL 1064,
available at: https://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2016-dalende-bodems-stijgende-kosten-1064.pdf
(last access: 25 February 2020), 2016.
Van der Hoek, J. P.: Towards a climate neutral water cycle, J. Water Clim., 3, 163–170, https://doi.org/10.2166/wcc.2012.015, 2012.
Van der Nat, F.-J. W. A., Middelburg, J. J., van Meteren, D., and Wielemakers, A.:. Diel methane emission patterns from Scirpus lacustris and Phragmites australis, Biogeochemistry, 41, 1–22, https://doi.org/10.1023/A:1005933100905, 1998.
Van Rotterdam, D., Kros, J., de Pater, J., Vogel, J., and Ros, G. H.:
Agrarische fosforbelasting van het oppervlaktewater en het
handelingsperspectief binnen het beheergebied van waterschap Amstel, Gooi en
Vecht, Rapport 1685.N.16, Nutriënten Management Instituut BV, Wageningen, 2019.
Vermaat, J. E., Hellmann, F., Dias, A. T. C., Hoorens, B., van Logtestijn, R. S. P., and Aerts, R.: Greenhouse gas fluxes from Dutch peatland water bodies: Importance of the surrounding landscape, Wetlands, 31, 493–498,
https://doi.org/10.1007/s13157-011-0170-y, 2011.
Wu, S., Li, S., Zou, Z., Hu, T., Hu, Z., Liu, S., and Zou, J.: High methane
emissions largely attributed to ebullitive fluxes from a subtropical river
draining a rice paddy watershed in China, Environ. Sci. Technol., 53,
3499–3507, https://doi.org/10.1021/acs.est.8b05286, 2019.
Xing, Y., Xie, P., Yang, H., Ni, L., Wang, Y., and Tang, W.: Diel variation
of methane fluxes in summer in a eutrophic subtropical lake in China,
J. Freshwater Ecol., 19, 639–644, 2004.
Short summary
Water authorities responsible for water quantity and water quality management may strongly influence the magnitude of greenhouse gas emissions from surface waters and adjacent peat areas within their territories.
In a case study of the Dutch Water Authority Amstel, Gooi and Vecht it is estimated that these emissions are about 10 times higher than the climate footprint of the operational management of the water authority.
Water authorities responsible for water quantity and water quality management may strongly...