Articles | Volume 382
https://doi.org/10.5194/piahs-382-427-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-382-427-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards regionally forecasting shallow subsidence in the Netherlands
Thibault Candela
CORRESPONDING AUTHOR
Department Applied Geosciences, TNO – Geological Survey of the Netherlands, Utrecht, the Netherlands
Kay Koster
Department Geomodelling, TNO – Geological Survey of the Netherlands, Utrecht, the Netherlands
Jan Stafleu
Department Geomodelling, TNO – Geological Survey of the Netherlands, Utrecht, the Netherlands
Wilfred Visser
Department Data and Information Dutch Subsurface, TNO – Geological Survey of the Netherlands, Utrecht, the Netherlands
Peter Fokker
Department Applied Geosciences, TNO – Geological Survey of the Netherlands, Utrecht, the Netherlands
Related authors
No articles found.
Janneke van Ginkel, Elmer Ruigrok, Jan Stafleu, and Rien Herber
Nat. Hazards Earth Syst. Sci., 22, 41–63, https://doi.org/10.5194/nhess-22-41-2022, https://doi.org/10.5194/nhess-22-41-2022, 2022
Short summary
Short summary
A soft, shallow subsurface composition has the tendency to amplify earthquake waves, resulting in increased ground shaking. Therefore, this paper presents a workflow in order to obtain a map classifying the response of the subsurface based on local geology, earthquake signals, and background noise recordings for the Netherlands. The resulting map can be used as a first assessment in regions with earthquake hazard potential by mining or geothermal energy activities, for example.
Ingrid C. Kroon, Peter A. Fokker, and Jaap N. Breunese
Proc. IAHS, 382, 615–620, https://doi.org/10.5194/piahs-382-615-2020, https://doi.org/10.5194/piahs-382-615-2020, 2020
Short summary
Short summary
The proper management of subsidence hazards requires a procedure to formulate thresholds and measurement & control loops. In this paper, we therefore propose a phased procedure of setting subsidence thresholds and control loops, intended for general use. The procedure is illustrated with three cases of mining projects from the Netherlands.
Tirza M. van Daalen, Peter A. Fokker, Paul J. F. Bogaard, and Michiel J. van der Meulen
Proc. IAHS, 382, 821–823, https://doi.org/10.5194/piahs-382-821-2020, https://doi.org/10.5194/piahs-382-821-2020, 2020
Short summary
Short summary
Subsidence forecasts can be improved by squeezing all possible information out of a variety of local data, ranging from geological data that bear information on subsidence potential to geodetic data which allow for subsidence monitoring. This paper will substantiate the value of subsidence information for governance in sensitive areas, using examples in the Netherlands. In particular, the potential role of a nation-wide, freely accessible repository for subsidence data will be highlighted.
Esther Stouthamer, Gilles Erkens, Kim Cohen, Dries Hegger, Peter Driessen, Hans Peter Weikard, Mariet Hefting, Ramon Hanssen, Peter Fokker, Jan van den Akker, Frank Groothuijse, and Marleen van Rijswick
Proc. IAHS, 382, 815–819, https://doi.org/10.5194/piahs-382-815-2020, https://doi.org/10.5194/piahs-382-815-2020, 2020
Short summary
Short summary
Ongoing subsidence is a complex problem for the Netherlands. Old strategies for coping have limits. In the Dutch National Scientific Research Program on Land Subsidence (2020–2025), we will develop an integrative approach to achieve feasible, legitimate and sustainable solutions for managing the negative societal effects of land subsidence, connecting fundamental research on subsidence processes to socio-economic impact of subsidence and to governance and legal framework design.
Kay Koster, Jan Stafleu, Peter C. Vos, and Michiel J. van der Meulen
Proc. IAHS, 382, 767–773, https://doi.org/10.5194/piahs-382-767-2020, https://doi.org/10.5194/piahs-382-767-2020, 2020
Kay Koster, Arnoud Frumau, Jan Stafleu, Joris Dijkstra, Arjan Hensen, Ilona Velzeboer, Joana Esteves Martins, and Willem Jan Zaadnoordijk
Proc. IAHS, 382, 609–614, https://doi.org/10.5194/piahs-382-609-2020, https://doi.org/10.5194/piahs-382-609-2020, 2020
Peter A. Fokker and Gilles Erkens
Proc. IAHS, 382, 1–4, https://doi.org/10.5194/piahs-382-1-2020, https://doi.org/10.5194/piahs-382-1-2020, 2020
P. A. Fokker and K. Van Thienen-Visser
Proc. IAHS, 372, 375–378, https://doi.org/10.5194/piahs-372-375-2015, https://doi.org/10.5194/piahs-372-375-2015, 2015
Short summary
Short summary
Hydrocarbon extraction lead to compaction of the gas reservoir which is visible as subsidence on the surface. We have used surface height difference measurements to quantify compaction of the Groningen gas reservoir in the Netherlands. This procedure yielded areas of increased and decreased levels of compaction compared to the existing compaction model in agreement with observed discrepancies in porosity and aquifer activity.
P. A. Fokker, J. Gunnink, G. de Lange, O. Leeuwenburgh, and E. F. van der Veer
Proc. IAHS, 372, 183–187, https://doi.org/10.5194/piahs-372-183-2015, https://doi.org/10.5194/piahs-372-183-2015, 2015
Short summary
Short summary
The Southern part of the Flevopolder has shown considerable subsidence since its reclamation in 1967. We have set up an integrated method to use subsidence data, water level data and forward models for compaction, oxidation and the resulting subsidence to estimate the driving parameters. We used two forward models: the Koppejan model and the Bjerrum model. In first instance, the Bjerrum model seems to perform better than the Koppejan model.
Cited articles
Baù, D., Ferronato, M., Gambolati, G., Teatini, P., and Alzraiee, A.:
Ensemble smoothing of land subsidence measurements for reservoir geomechanical characterization, Int. J. Num. Anal. Meth. Geomech., 39, 207–228, 2015.
Candela, T., Osinga, S., van der Veer, E. F., ter Heege, J. H., and Fokker, P.: Improving Reservoir Exploitation Using Fast Geomechanical Modelling Coupled with Surface Displacement Data Assimilation, in: SPE Reservoir Characterisation and Simulation Conference and Exhibition, SPE-186028-MS, 8–10 May 2016, Abu Dhabi, 2016.
Doornhof, D.: Surface subsidence in The Netherlands: The Groningen gas field, Geologie en Mijnbouw, 71, 119–130, 1992.
Emerick, A. A. and Reynolds, A. C.: Ensemble smoother with multiple data
assimilation, Comput. Geosci., 55, 3–15, 2013.
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003.
Fokker, P. A., Visser, K., Peters, E., Kunakbayeva, G., and Muntendam-Bos, A. G.: Inversion of surface subsidence data to quantify reservoir compartmentalization: A field study, J. Petrol. Sci. Eng., 96, 10–21, 2012.
Fokker, P. A., Wassing, B. B. T., Van Leijen, F. J., Hanssen, R. F., and
Nieuwland, D. A.: Application of an ensemble smoother with multiple data
assimilation to the Bergermeer gas field, using PS-InSAR, Geom. Energ. Environ., 5, 16–28, 2016.
Fokker, P. A., van Leijen, F. J., Orlic, B., van der Marel, H., and Hanssen, R. F.: Subsidence in the Dutch Wadden Sea, Neth. J. Geosci., 97, 129–181, 2018.
Fokker, P. A., Gunnink, J. L., Koster, K., and De Lange, G.: Disentangling and parameterizing shallow sources of subsidence: application to a reclaimed
coastal area, Flevoland, the Netherlands, J. Geophys. Res.-Earth, 124, 1099–1117, 2019.
Jaynes, E. T.: Probability theory. The logic of science, Cambridge University
Press, Cambridge, 2003.
Koster, K., Cohen, K. M., Stafleu, J., and Stouthamer, E.: Using 14C-dated peat beds for reconstructing subsidence by compression in the Holland coastal plain of the Netherlands, J. Coast. Res., 34, 1035–1045, 2018a.
Koster, K., Stafleu, J., Cohen, K. M., Stouthamer, E., Busschers, F. S., and
Middelkoop, H.: Three-dimensional distribution of organic matter in coastal-deltaic peat: Implications for subsidence and carbon dioxide emissions by human-induced peat oxidation, Anthropocene, 22, 1–9, 2018b.
Koster, K., Stafleu, J., and Stouthamer, E.: Differential subsidence in the
urbanized coastal-deltaic plain of the Netherlands, Neth. J. Geosci., 97,
215–227, 2018c.
Reggiani, P. and Weerts, A. H.: A Bayesian approach to decision-making under
uncertainty: an application to real-time forecasting in the river Rhine, J.
Hydrol., 356, 56–69, 2008.
Stafleu, J., Maljers, D., Gunnink, J. L., Menkovic, A., and Busschers, F. S.:
3D modeling of the shallow subsurface of Zeeland, the Netherlands, Neth. J.
Geosci., 90, 293–310, 2011.
TNO-GSN: Online portal for digital geo-information, Geological
Survey of the Netherlands, available at: https://www.dinoloket.nl/en,
last access: November 2019.
Van den Akker, J. J. H., Kuikman, P. J., de Vries, F., Hoving, I., Pleijter,
M., Hendriks, R. F. A., Wolleswinkel, R. J., Simões, R. T. L., and Kwakernaak, C.: Emission of CO2 from agricultural peat soils in the Netherlands and ways to limit this emission, edited by: Farrell, C. and Feehan, J., in: Vol. 1 Oral Pres., Proc. of the 13th Int. Peat Congr. After Wise Use – The Future of Peatlands, 8–13 June 2008, Tullamore, Ireland, Int. Peat Soc., Jyväskylä, Finland, 645–648, 2008.
Van den Born, G. J., Kragt, F., Henkens, D., Rijken, Van Bemmel, B., and Van der Sluis, S.: Dalende bodem, stijgende kosten, PBL, Den Haag, 94 pp., 2016.
Van der Meulen, M. J., Doornenbal, J. C., Gunnink, J. L., Stafleu, J., Schokker, J., Vernes, R. W., Van Geer, F. C., Van Gessel, S. F., Van Heteren,
S., Van Leeuwen, R. J. W., Bakker, M. A. J., Bogaard, P. J. F., Busschers, F. S., Griffioen, J., Gruijters, S. H. L. L., Kiden, P., Schroot, B. M., Simmelink, H. J., Van Berkel, W. O., Van der Krogt, R. A. A., Westerhoff, W. E., and Van Daalen, T. M.: 3D Geology in a 2D country: perspectives for geological surveying in the Netherlands, Neth. J. Geosci., 92, 217–241, 2013.
Van Thienen-Visser, K. and Fokker, P. A.: The future of subsidence modelling: compaction and subsidence due to gas depletion of the Groningen gas field in the Netherlands, Neth. J. Geosci., 96, 105–116, 2017.
van Thienen-Visser, K., Pruiksma, J. P., and Breunese, J. N.: Compaction and subsidence of the Groningen gas field in the Netherlands, Proc. IAHS, 372, 367–373, https://doi.org/10.5194/piahs-372-367-2015, 2015.
Vink, A., Steffen, H., Reinhardt, L., and Kaufmann, G.: Holocene relative
sea-level change, isostactic subsidence and the radial viscosity structure
of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea), Quaternary Sci. Rev., 26, 3249–3275, 2007.
Vonhögen, L. M., Doornebal, P. J., De Lange, G., Fokker, P. A., and
Gunnink, J. L.: Subsidence in the Holocene delta of the Netherlands, Proc. IAHS, 339, 158–163, 2010.
Zagwijn, W. H.: The Netherlands during the Tertiary and Quaternary: a case
history of coastal lowlands evolution, Geologie en Mijnbouw, 68, 107–121,
1989.
Short summary
We propose a novel approach combining data and model for shallow subsidence predictions in the Netherlands.
We propose a novel approach combining data and model for shallow subsidence predictions in the...