Articles | Volume 382
https://doi.org/10.5194/piahs-382-11-2020
https://doi.org/10.5194/piahs-382-11-2020
Pre-conference publication
 | 
22 Apr 2020
Pre-conference publication |  | 22 Apr 2020

GPS geodetic infrastructure for subsidence and fault monitoring in Houston, Texas, USA

Gonzalo Agudelo, Guoquan Wang, Yuhao Liu, Yan Bao, and Michael J. Turco

Related authors

Rapid Land Subsidence in Tianjin, China Derived from Continuous GPS Observations (2010–2019)
Ruibin Zhao, Guoquan Wang, Xiao Yu, Xiaohan Sun, Yan Bao, Genru Xiao, Weijun Gan, and Shuilong Shen
Proc. IAHS, 382, 241–247, https://doi.org/10.5194/piahs-382-241-2020,https://doi.org/10.5194/piahs-382-241-2020, 2020
Short summary
Groundwater Regulation and the Development of Alternative Source Waters to Prevent Subsidence, Houston Region, Texas, USA
Christina Petersen, Michael J. Turco, Alia Vinson, Joseph A. Turco, Alan Petrov, and Mark Evans
Proc. IAHS, 382, 797–801, https://doi.org/10.5194/piahs-382-797-2020,https://doi.org/10.5194/piahs-382-797-2020, 2020
Short summary
Assessment of Subsidence Risk Associated with Brackish Groundwater Development in the Coastal Lowlands Aquifer, Houston, Texas, USA
Neil Deeds, Michael Turco, Van Kelley, Christina Petersen, and Susan Baird
Proc. IAHS, 382, 437–441, https://doi.org/10.5194/piahs-382-437-2020,https://doi.org/10.5194/piahs-382-437-2020, 2020
Short summary
Assessment of subsidence risk associated with aquifer storage and recovery in the Coastal Lowlands Aquifer System, Houston, Texas, USA
Van Kelley, Michael Turco, Neil Deeds, Christina Petersen, and Chris Canonico
Proc. IAHS, 382, 487–491, https://doi.org/10.5194/piahs-382-487-2020,https://doi.org/10.5194/piahs-382-487-2020, 2020
Short summary
GPS-derived ground deformation (2005–2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame
Jiangbo Yu and Guoquan Wang
Nat. Hazards Earth Syst. Sci., 16, 1583–1602, https://doi.org/10.5194/nhess-16-1583-2016,https://doi.org/10.5194/nhess-16-1583-2016, 2016
Short summary

Cited articles

Bertiger, W., Desai, S., Haines, B., Harvey, N., Moore, A., Owen, S., and Weiss, J.: Single receiver phase ambiguity resolution with GPS data, J. Geodesy, 84, 327–337, https://doi.org/10.1007/s00190-010-0371-9, 2010. 
Blewitt, G., Kreemer, C., Hammond, W. C., and Goldfarb, J. M.: Terrestrial reference frame NA12 for crustal deformation studies in North America, J. Geodyn., 72, 11–24, https://doi.org/10.1016/j.jog.2013.08.004, 2013. 
Huffman Jr., A. C., Kinney, S. A., Biewick, L., Mitchell, H. R., and Gunther G. L.: Salt diapirs in the Gulf Coast, from Gulf Coast Geology (GCG) Online – Miocene of Southern Louisiana, Version 1, DS-90-A, US Geological Survey, Reston, VA, USA, available at: https://pubs.usgs.gov/ds/2004/90/A (last access: 8 March 2020), 2004. 
Kasmarek, M. C. and Ramage, J. K.: Water-level altitudes 2017 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2016 in the Chicot and Evangeline aquifers, Houston Galveston region, Texas, U.S. Geological Survey Scientific Investigations Report 2017–5080, https://doi.org/10.3133/sir20175080, 2017. 
Kearns, T. J., Wang, G., Bao, Y., Jiang, J., and Lee, D.: Current land subsidence and groundwater level changes in the Houston metropolitan area, Texas (2005–2012), J. Surv. Eng., 141, 1–16, https://doi.org/10.1061/(ASCE)SU.1943-5428.0000147, 2015. 
Download
Short summary
Houston, Texas, is one of the earliest urban areas to employ Global Positioning System (GPS) technology for land subsidence and fault monitoring. As of 2020, the University of Houston and the Harris-Galveston Subsidence District have integrated over 230 permanent GPS stations into their routine GPS data processing for regional subsidence and fault monitoring. This article summarizes the GPS geodetic infrastructure in the Greater Houston region.