Articles | Volume 379
https://doi.org/10.5194/piahs-379-335-2018
https://doi.org/10.5194/piahs-379-335-2018
Pre-conference publication
 | 
05 Jun 2018
Pre-conference publication |  | 05 Jun 2018

Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China

Zhanjie Li, Jingshan Yu, Xinyi Xu, Wenchao Sun, Bo Pang, and Jiajia Yue

Viewed

Total article views: 3,965 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
3,250 620 95 3,965 97 101
  • HTML: 3,250
  • PDF: 620
  • XML: 95
  • Total: 3,965
  • BibTeX: 97
  • EndNote: 101
Views and downloads (calculated since 05 Jun 2018)
Cumulative views and downloads (calculated since 05 Jun 2018)

Viewed (geographical distribution)

Total article views: 2,879 (including HTML, PDF, and XML) Thereof 2,780 with geography defined and 99 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 08 Nov 2024
Download
Short summary
Multi-model ensemble hydrological simulation has been an effective method for improving simulation accuracy. This study explored the feasibility of applying a multi-model ensemble simulation to the upper Yalongjiang River Basin. The results of the BPNN multi-model ensemble simulation are better than that of a single model. Multi-model ensemble simulation should become an important direction in hydrological simulation research.