Articles | Volume 377
https://doi.org/10.5194/piahs-377-3-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piahs-377-3-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multi-approach and multi-scale study on water quantity and quality changes in the Tapajós River basin, Amazon
Rodolfo Luiz Bezerra Nóbrega
CORRESPONDING AUTHOR
Department of Physical Geography, Faculty of Geoscience and Geography, University of Göttingen, Göttingen, Germany
now at: Department of Geography & Environmental Science, University of Reading, Reading, UK
Gabriele Lamparter
Department of Physical Geography, Faculty of Geoscience and Geography, University of Göttingen, Göttingen, Germany
Harold Hughes
Department of Physical Geography, Faculty of Geoscience and Geography, University of Göttingen, Göttingen, Germany
Alphonce Chenjerayi Guzha
USDA Forest Service, International Programs, c/o CIFOR, World Agroforestry Center, Nairobi, Kenya
Ricardo Santos Silva Amorim
Department of Soil and Agricultural Engineering, Federal University of Mato Grosso, Cuiabá, MT, Brazil
Gerhard Gerold
Department of Physical Geography, Faculty of Geoscience and Geography, University of Göttingen, Göttingen, Germany
Related authors
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
R. L. B. Nobrega, A. C. Guzha, G. N. Torres, K. Kovacs, G. Lamparter, R. S. S. Amorim, E. Couto, and G. Gerold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-9915-2015, https://doi.org/10.5194/hessd-12-9915-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
This study examines the rainfall-runoff processes in micro-catchments in which a main source of variability is the contrasting land use. The study area is located in the Amazonian agricultural frontier, in the Brazilian Cerrado biome, and it aims to fill a gap in the literature concerning the Brazilian Cerrado, and to understand how streamflow and catchment hydrologic regimes are conditioned by microclimate, precipitation pattern, land cover and soil properties, among other catchment properties.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Britta Greenshields, Barbara von der Lühe, Felix Schwarz, Harold J. Hughes, Aiyen Tjoa, Martyna Kotowska, Fabian Brambach, and Daniela Sauer
Biogeosciences, 20, 1259–1276, https://doi.org/10.5194/bg-20-1259-2023, https://doi.org/10.5194/bg-20-1259-2023, 2023
Short summary
Short summary
Silicon (Si) can have multiple beneficial effects on crops such as oil palms. In this study, we quantified Si concentrations in various parts of an oil palm (leaflets, rachises, fruit-bunch parts) to derive Si storage estimates for the total above-ground biomass of an oil palm and 1 ha of an oil-palm plantation. We proposed a Si balance by identifying Si return (via palm fronds) and losses (via harvest) in the system and recommend management measures that enhance Si cycling.
Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Christian Stiegler, Suria Tarigan, Aiyen Tjoa, and Daniela Sauer
SOIL, 9, 169–188, https://doi.org/10.5194/soil-9-169-2023, https://doi.org/10.5194/soil-9-169-2023, 2023
Short summary
Short summary
Silicon (Si) research could provide complementary measures in sustainably cultivating oil-palm monocultures. Our study shows that current oil-palm management practices and topsoil erosion on oil-palm plantations in Indonesia have caused a spatial distribution of essential Si pools in soil. A lack of well-balanced Si levels in topsoil could negatively affect crop yield and soil fertility for future replanting at the same plantation site. Potential measures are suggested to maintain Si cycling.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
R. L. B. Nobrega, A. C. Guzha, G. N. Torres, K. Kovacs, G. Lamparter, R. S. S. Amorim, E. Couto, and G. Gerold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-9915-2015, https://doi.org/10.5194/hessd-12-9915-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
This study examines the rainfall-runoff processes in micro-catchments in which a main source of variability is the contrasting land use. The study area is located in the Amazonian agricultural frontier, in the Brazilian Cerrado biome, and it aims to fill a gap in the literature concerning the Brazilian Cerrado, and to understand how streamflow and catchment hydrologic regimes are conditioned by microclimate, precipitation pattern, land cover and soil properties, among other catchment properties.
Cited articles
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J.,
Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W.,
Kannan, N., and Jha, M. K.: SWAT: Model Use, Calibration, and Validation,
T. ASABE, 55, 1491–1508, https://doi.org/10.13031/2013.42256, 2012.
ASTM: Standard Test Methods for Determining Sediment Concentration in Water
Samples: D3977-97, West Conshohocken, PA, 2000.
Bleich, M. E., Mortati, A. F., André, T., and Piedade, M. T. F.: Structural
Dynamics of Pristine Headwater Streams from Southern Brazilian Amazon, River
Res. Appl., 32, 473–482, https://doi.org/10.1002/rra.2875, 2016.
Bragança, A.: Prices, land use and deforestation: Evidence from the Tapajós
basin, Rio de Janeiro, available at: http://www.inputbrasil.org (last
access: 15 May 2017), 2015.
Davidson, E. A., de Araújo, A. C., Artaxo, P., Balch, J. K., Brown, I. F.,
Bustamante, M. M., Coe, M. T., DeFries, R. S., Keller, M., Longo, M., Munger,
J. W., Schroeder, W., Soares-Filho, B. S., Souza, C. M., and Wofsy, S. C.: The
Amazon basin in transition, Nature, 481, 321–328, https://doi.org/10.1038/nature10717, 2012.
Eshleman, K. N.: Hydrological Consequences of Land Use Change: A Review of the
State-of-Science, in: Ecosystems and Land Use Change, edited by: Defries, R. S.,
Asner, G. P., and Houghton, R. A., American Geophysical Union, Washington, D.C.,
https://doi.org/10.1029/153GM03, 2004.
Fearnside, P. M.: Brazil's Amazonian forest carbon: the key to Southern Amazonia's
significance for global climate, Reg. Environ. Chang., https://doi.org/10.1007/s10113-016-1007-2, in press, 2016.
Gollnow, F., Göpel, J., deBarros Viana Hissa, L., Schaldach, R., and Lakes,
T.: Scenarios of land-use change in a deforestation corridor in the Brazilian
Amazon: combining two scales of analysis, Reg. Environ. Chang., https://doi.org/10.1007/s10113-017-1129-1, in press, 2017.
Guzha, A. C., Nobrega, R. L. B., Kovacs, K., Rebola-Lichtenberg, J., Amorim,
R. S. S., and Gerold, G.: Characterizing rainfall-runoff signatures from
micro-catchments with contrasting land cover characteristics in southern
Amazonia, Hydrol. Process., 29, 508–521, https://doi.org/10.1002/hyp.10161, 2015.
Lamparter, G., Nobrega, R. L. B., Kovacs, K., Amorim, R. S., and Gerold, G.:
Modelling hydrological impacts of agricultural expansion in two macro-catchments
in Southern Amazonia, Brazil, Reg. Environ. Chang., https://doi.org/10.1007/s10113-016-1015-2, in press, 2016.
Lima, L. S., Coe, M. T., Soares Filho, B. S., Cuadra, S. V., Dias, L. C. P.,
Costa, M. H., Lima, L. S. and Rodrigues, H. O.: Feedbacks between deforestation,
climate, and hydrology in the Southwestern Amazon: Implications for the provision
of ecosystem services, Landsc. Ecol., 29, 261–274, https://doi.org/10.1007/s10980-013-9962-1, 2014.
Neill, C., Deegan, L. A., Thomas, S. M., and Cerri, C. C.: Deforestation for
pasture alters nitrogen and phosphorus in small Amazonian streams, Ecol. Appl.,
11, 1817–1828, https://doi.org/10.1890/1051-0761(2001)011[1817:DFPANA]2.0.CO;2, 2001.
Nóbrega, R. L. B., Guzha, A. C., Torres, G. N., Kovacs, K., Lamparter, G.,
Amorim, R. S. S., Couto, E., and Gerold, G.: Effects of conversion of native
cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration
and streamflow on the Amazonian agricultural frontier, PLoS One, 12, e0179414,
https://doi.org/10.1371/journal.pone.0179414, 2017.
Ometto, J. P., Aguiar, A. P. D., and Martinelli, L. A.: Amazon deforestation
in Brazil: effects, drivers and challenges, Carbon Manage., 2, 575–585,
https://doi.org/10.4155/cmt.11.48, 2011.
Pavanato, H. J., Melo-Santos, G., Lima, D. S., Portocarrero-Aya, M., Paschoalini,
M., Mosquera, F., Trujillo, F., Meneses, R., Marmontel, M., and Maretti, C.:
Risks of dam construction for South American river dolphins: A case study of
the Tapajós River, Endanger. Species Res., 31, 47–60, https://doi.org/10.3354/esr00751, 2016.
Soares-Filho, B. S., Nepstad, D. C., Curran, L. M., Cerqueira, G. C., Garcia,
R. A., Ramos, C. A., Voll, E., McDonald, A., Lefebvre, P., and Schlesinger, P.:
Modelling conservation in the Amazon basin, Nature, 440, 520–523, https://doi.org/10.1038/nature04389, 2006.
Souza-Filho, P. W. M., de Souza, E. B., Silva Júnior, R. O., Nascimento,
W. R., Versiani de Mendonça, B. R., Guimarães, J. T. F., Dall'Agnol,
R., and Siqueira, J. O.: Four decades of land-cover, land-use and hydroclimatology
changes in the Itacaiúnas River watershed, southeastern Amazon, J. Environ.
Manage., 167, 175–184, https://doi.org/10.1016/j.jenvman.2015.11.039, 2016.
Thomas, S. M., Neill, C., Deegan, L. A., Krusche, A. V., Ballester, V. M., and
Victoria, R. L.: Influences of land use and stream size on particulate and
dissolved materials in a small Amazonian stream network, Biogeochemistry, 68,
135–151, https://doi.org/10.1023/B:BIOG.0000025734.66083.b7, 2004.
Vedovato, L. B., Fonseca, M. G., Arai, E., Anderson, L. O., and Aragão, L.
E. O. C.: The extent of 2014 forest fragmentation in the Brazilian Amazon,
Reg. Environ. Change, 16, 2485–2490, https://doi.org/10.1007/s10113-016-1067-3, 2016.
Short summary
We analyzed the impacts of deforestation on water quantity and quality in the Tapajós River, one of the main tributaries of the Amazon River. To that end, we used data from 2 years of fieldwork as well other state-of-the-art techniques in small and large areas of this study area. We found changes in water quality and quantity across small and large portions of this area. Our results show that some impacts of deforestation usually observed in small streams are also affecting the major river.
We analyzed the impacts of deforestation on water quantity and quality in the Tapajós River,...