Articles | Volume 376
https://doi.org/10.5194/piahs-376-25-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-376-25-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Water impacts and water-climate goal conflicts of local energy choices – notes from a Swedish perspective
Rebecka Ericsdotter Engström
CORRESPONDING AUTHOR
Department of Energy Technology, Royal Institute of Technology,
Stockholm, Sweden
Mark Howells
Department of Energy Technology, Royal Institute of Technology,
Stockholm, Sweden
Georgia Destouni
Department of Physical Geography and the Bolin Centre of Climate Research, Stockholm University, Stockholm, Sweden
Related authors
No articles found.
René Orth, Georgia Destouni, Martin Jung, and Markus Reichstein
Biogeosciences, 17, 2647–2656, https://doi.org/10.5194/bg-17-2647-2020, https://doi.org/10.5194/bg-17-2647-2020, 2020
Short summary
Short summary
Drought duration is a key control of the large-scale biospheric drought response.
Thereby, the vegetation responds linearly to drought duration at large spatial scales.
The slope of the linear relationship between the vegetation drought response and drought duration is steeper in drier climates.
Navid Ghajarnia, Georgia Destouni, Josefin Thorslund, Zahra Kalantari, Imenne Åhlén, Jesús A. Anaya-Acevedo, Juan F. Blanco-Libreros, Sonia Borja, Sergey Chalov, Aleksandra Chalova, Kwok P. Chun, Nicola Clerici, Amanda Desormeaux, Bethany B. Garfield, Pierre Girard, Olga Gorelits, Amy Hansen, Fernando Jaramillo, Jerker Jarsjö, Adnane Labbaci, John Livsey, Giorgos Maneas, Kathryn McCurley Pisarello, Sebastián Palomino-Ángel, Jan Pietroń, René M. Price, Victor H. Rivera-Monroy, Jorge Salgado, A. Britta K. Sannel, Samaneh Seifollahi-Aghmiuni, Ylva Sjöberg, Pavel Terskii, Guillaume Vigouroux, Lucia Licero-Villanueva, and David Zamora
Earth Syst. Sci. Data, 12, 1083–1100, https://doi.org/10.5194/essd-12-1083-2020, https://doi.org/10.5194/essd-12-1083-2020, 2020
Short summary
Short summary
Hydroclimate and land-use conditions determine the dynamics of wetlands and their ecosystem services. However, knowledge and data for conditions and changes over entire wetlandscapes are scarce. This paper presents a novel database for 27 wetlandscapes around the world, combining survey-based local information and hydroclimatic and land-use datasets. The developed database can enhance our capacity to understand and manage critical wetland ecosystems and their services under global change.
Lucile Verrot and Georgia Destouni
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-165, https://doi.org/10.5194/hess-2016-165, 2016
Manuscript not accepted for further review
K. Mazi, A. D. Koussis, and G. Destouni
Hydrol. Earth Syst. Sci., 18, 1663–1677, https://doi.org/10.5194/hess-18-1663-2014, https://doi.org/10.5194/hess-18-1663-2014, 2014
R. Giesler, S. W. Lyon, C.-M. Mörth, J. Karlsson, E. M. Karlsson, E. J. Jantze, G. Destouni, and C. Humborg
Biogeosciences, 11, 525–537, https://doi.org/10.5194/bg-11-525-2014, https://doi.org/10.5194/bg-11-525-2014, 2014
E. J. Jantze, S. W. Lyon, and G. Destouni
Hydrol. Earth Syst. Sci., 17, 3827–3839, https://doi.org/10.5194/hess-17-3827-2013, https://doi.org/10.5194/hess-17-3827-2013, 2013
E. Bosson, T. Lindborg, S. Berglund, L.-G. Gustafsson, J.-O. Selroos, H. Laudon, L. L. Claesson, and G. Destouni
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-9271-2013, https://doi.org/10.5194/hessd-10-9271-2013, 2013
Revised manuscript not accepted
Cited articles
Bakken, T. H., Killingtveit, Å., Engeland, K., Alfredsen, K., and Harby,
A.: Water consumption from hydropower plants – review of published estimates
and an assessment of the concept, Hydrol. Earth Syst. Sci., 17, 3983–4000,
https://doi.org/10.5194/hess-17-3983-2013, 2013.
Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., Steduto, P.,
Mueller, A., Komor, P., Tol, R., and Yumkella, K.: Considering
the Energy, Water and Food Nexus: Towards an Integrated Modelling Approach,
Energ. Policy, 39, 7896–7906, https://doi.org/10.1016/j.enpol.2011.09.039, 2011.
Caro, D., Pulselli, F. M., Borghesi, S., and Bastianoni, S.: Mapping the
International Flows of GHG Emissions within a More Feasible Consumption-Based
Framework, J. Clean. Prod., 147, 142–151,
https://doi.org/10.1016/j.jclepro.2017.01.106, 2017.
Covenant of Mayors: http://www.covenantofmayors.eu/index_en.html, last
access: 28 March 2017.
Destouni, G., Jaramillo, F., and Prieto, C.: Hydroclimatic Shifts Driven by
Human Water Use for Food and Energy Production, Nature Climate Change, 3,
213–217, https://doi.org/10.1038/nclimate1719, 2013.
EPRI: Water Use for Electric Generation, Palo Alto, CA, 1014026,
available at: https://www.epri.com/#/pages/product/1014026/ (last access: 29 May
2017), 2008.
Fthenakis, V. and Kim, H. C.: Life-Cycle Uses of Water in U.S. Electricity
Generation, Renewable and Sustainable Energy Reviews, 14, 2039–2048,
https://doi.org/10.1016/j.rser.2010.03.008, 2010.
Gerbens-Leenes, P. W., Hoekstra, A. Y., and van der Meer, Th. H.:
Water Footprint of Bio-Energy and Other Primary Energy Carriers,
Value of water research report series 29. UNESCO-IHE Institute for Water Education,
available at: https://ris.utwente.nl/ws/portalfiles/portal/5148108 (last access: 10 October 2017), 2008.
Gerbens-Leenes, P. W., Hoekstra, A. Y., and van der Meer, Th. H.: The Water
Footprint of Bioenergy, Proceedings of the National Academy of Sciences,
106, 10219–10223, https://doi.org/10.1073/pnas.0812619106, 2009.
Gerbens-Leenes, P. W., Van Lienden, A. R., Hoekstra, A. Y., and Van der Meer,
Th. H.: Biofuel Scenarios in a Water Perspective: The Global Blue and Green
Water Footprint of Road Transport in 2030, Global Environmental Change, 22,
764–775, https://doi.org/10.1016/j.gloenvcha.2012.04.001, 2012.
Granit, J. and Lindström, A.: Constraints and Opportunities in Meeting
the Increasing Use of Water for Energy Production, in: Proceedings of the
ESF Strategic Workshop on Accounting for Water Scarcity and Pollution in the
Rules of International Trade, Value of Water Research Report Series.
Amsterdam: UNESCO-IHE Institute for Water Education, 54, 85–98, 2010.
Griggs, D., Nilsson, M., Stevance, A., and McCollum, D.: A Guide to SDG
Interactions: From Science to Implementation, Report, Paris, France:
International Council for Science (ICSU),
http://www.icsu.org/cms/2017/05/SDGs-Guide-to-Interactions.pdf, 2017.
Hamiche, A. M., Boudghene Stambouli, A., and Flazi, S.: A Review of the
Water-Energy Nexus, Renew. Sust. Energ. Rev., 65, 319–331,
https://doi.org/10.1016/j.rser.2016.07.020, 2016.
Holland, R. A., Scott, K. A., Flörke, M., Brown, G., Ewers, R. M.,
Farmer, E., Kapos, V., Muggeridge, A., Scharlemann, J. P. W., Taylor, G.,
Barrett, J., and Eigenbrod, F.:
Global Impacts of Energy Demand on the Freshwater Resources of Nations, P.
Natl. Acad. Sci., 112, E6707–E6716,
https://doi.org/10.1073/pnas.1507701112, 2015.
Hussey, K. and Pittock, J.: The Energy–Water Nexus: Managing the Links
between Energy and Water for a Sustainable Future, Ecol. Soc., 17,
31, https://doi.org/10.5751/ES-04641-170131, 2012.
IEA: World Energy Outlook 2012, Paris, OECD Publishing,
https://doi.org/10.1787/weo-2012-en, 2012.
Jaramillo, F. and Destouni, G.: Local Flow Regulation and Irrigation Raise
Global Human Water Consumption and Footprint, Science, 350, 1248–1251,
https://doi.org/10.1126/science.aad1010, 2015.
Katers, J. F. and Snippen, A.: Life-cycle Inventory of Wood Pellets
Manufacturing in Wisconsin, Final Report, Environmental and Economic Research
and Development Program of the Public Service Commission of Wisconsin & the
Statewide Energy Efficiency and Renewables Administration, available at:
https://www.focusonenergy.com/sites/default/files/research/katerswoodpelletmfg_report.pdf,
(last access: 30 September 2017), March 2011.
Macknick, J., Sattler, S., Averyt, K., Clemmer, S., and Rogers, J.: The Water
Implications of Generating Electricity: Water Use across the United States
Based on Different Electricity Pathways through 2050, Environ. Res. Lett.,
7, 045803, https://doi.org/10.1088/1748-9326/7/4/045803, 2012.
Mekonnen, M. M. and Hoekstra, A. Y.: The green, blue and grey water footprint
of animals and animal products. (Value of water research report 48; No. 48),
Delft, the Netherlands: Unesco-IHE Institute for Water Education,
http://doc.utwente.nl/76912, 2010.
Mekonnen, M. M., Gerbens-Leenes, P. W., and Hoekstra, A. Y.: The Consumptive
Water Footprint of Electricity and Heat: A Global Assessment, Environmental
Science: Water Research & Technology, 1, 285–297, https://doi.org/10.1039/c5ew00026b,
2015.
Mielke, E., Anadon, L. D., and Narayanamurti, V.: Water Consumption of Energy
Resource Extraction, Processing, and Conversion, Belfer Center for Science
and International Affairs,
http://live.belfercenter.org/files/ETIP-DP-2010-15-final-2.pdf
(last access: 13 October 2017), 2010.
Nationella emissionsdatabasen: RUS, Nationella Emissionsdatabasen,
http://www.airviro.smhi.se/cgi-bin/RUS/apub.html_rusreport.cgi, last
access: 29 May 2017.
Nilsson, M., Griggs, D., and Visbeck, M.: Policy: Map the Interactions
between Sustainable Development Goals, Nature News, 534, 320,
https://doi.org/10.1038/534320a, 2016.
Pacetti, T., Lombardi, L., and Federici, G.: Water–energy Nexus: A Case of
Biogas Production from Energy Crops Evaluated by Water Footprint and Life
Cycle Assessment (LCA) Methods, J. Clean. Prod., 101, 278–291,
https://doi.org/10.1016/j.jclepro.2015.03.084, 2015.
Region Gotland: Gotland i Siffror 2016, Gotland i Siffror, Visby, Region
Gotland, available at: http://gotland.se/statistik (last access: 29 May 2017), 2016.
Rio Carrillo, A. M. and Frei, C.: Water: A Key Resource in Energy Production,
Energ. Policy, 37, 4303–4312, https://doi.org/10.1016/j.enpol.2009.05.074, 2009.
Sachs, J., Schmidt-Traub, G., Kroll, C., Durand-Delacre, D., and Teksoz, K.:
SDG Index & Dashboards – Global Report, New York, Bertelsmann Stiftung
and Sustainable Development Solutions Network (SDSN), available at:
https://issuu.com/unsdsn/docs/sdg_index_dashboard_full (last access: 29
May 2017), 2016.
SCB Statistikdatabasen: SCB Statistikdatabasen [Electronic resource]
Statistical database, available at:
http://www.scb.se/Statistikdatabasen, last access: 29 May 2017.
Scott, C. A., Pierce, S. A., Pasqualetti, M. J., Jones, A. L., Montz, B. E.,
and Hoover, J. H.: Policy and Institutional Dimensions of the Water–energy
Nexus, Energ. Policy, Sustainability of biofuels, 39, 6622–6630,
https://doi.org/10.1016/j.enpol.2011.08.013, 2011.
Scown, C. D., Horvath, A., and McKone, T. E.: Water Footprint of U.S.
Transportation Fuels, Environ. Sci. Technol., 45, 2541–2553,
https://doi.org/10.1021/es102633h, 2011.
Spang, E. S., Moomaw, W. R., Gallagher, K. S., Kirshen, P. H., and Marks, D.
H.: The Water Consumption of Energy Production: An International Comparison,
Environ. Res. Lett., 9, 105002, https://doi.org/10.1088/1748-9326/9/10/105002, 2014.
Stokes, J. and Horvath, A.: Life-Cycle Assessment of Urban Water Provision:
Tool and Case Study in California, J. Infrastruct. Syst., 17, 15–24,
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000036, 2010.
Theobald, E. J., Ettinger, A. K., Burgess, H. K., DeBey, L. B., Schmidt, N.
R., Froehlich, H. E., Wagner, C., HilleRisLambers, J., Tewksbury, J.,
Harsch, M. A., and Parrish, J. K.: Global Change and Local Solutions: Tapping the Unrealized Potential
of Citizen Science for Biodiversity Research, Biol. Conserv., 181,
236–244, https://doi.org/10.1016/j.biocon.2014.10.021, 2015.
Tukker, A.: Life Cycle Assessment as a Tool in Environmental Impact
Assessment, Environ. Impact Assess., 20, 435–456,
https://doi.org/10.1016/S0195-9255(99)00045-1, 2000.
Vattenfall, A. B.: Certified Environmental Product Declaration
EPD® of Electricity from Vattenfall Nordic
Nuclear Power Plants, Certified Environmental Product Declaration
EPD® S-P-00923. UNCPC Code 17, Group 171,
available at: http://www.environdec.com/en/Detail/epd923 (last access:
10 October 2017), 2016.
Wamsler, C., Luederitz, C., and Brink, E.: Local Levers for Change:
Mainstreaming Ecosystem-Based Adaptation into Municipal Planning to Foster
Sustainability Transitions, Global Environ. Chang., 29, 189–201,
https://doi.org/10.1016/j.gloenvcha.2014.09.008, 2014.
Xue, B. and Tobias, M.: Sustainability in China: Bridging Global Knowledge
with Local Action, Sustainability, 7, 3714–3720, https://doi.org/10.3390/su7043714,
2015.
Yang, Z., Dong, W., Wei, T., Fu, Y., Cui, X., Moore, J., and Chou, J.:
Constructing Long-Term (1948–2011) Consumption-Based Emissions Inventories,
J. Clean. Prod., 103, 793–800, https://doi.org/10.1016/j.jclepro.2014.03.053, 2015.
Short summary
To meet the global goals (SDGs) on energy and climate, local communities must move towards sustainable energy systems. Our study explores the indirect water uses linked to the supply of energy in 21 counties of Sweden – the country considered to be most advanced towards meeting the SDGs. Results show that the quantity and geography of energy-related water use vary greatly between counties. Further, local inventories of CO2-emissions or direct water use poorly correlate with these variation.
To meet the global goals (SDGs) on energy and climate, local communities must move towards...